A proposed method for estimating habitat suitability of weed biological control agents with experimentally derived thermal injury and weather data.

IF 1.5 3区 农林科学 Q2 ENTOMOLOGY
Ian A Knight, Felix E Bingham, Megann M Harlow, Annie H Huang, Chelsea Bohaty, Nathan E Harms
{"title":"A proposed method for estimating habitat suitability of weed biological control agents with experimentally derived thermal injury and weather data.","authors":"Ian A Knight, Felix E Bingham, Megann M Harlow, Annie H Huang, Chelsea Bohaty, Nathan E Harms","doi":"10.1093/ee/nvaf099","DOIUrl":null,"url":null,"abstract":"<p><p>Ecological niche modelling provides a tool for making a priori predictions of habitat suitability for biological control agents. Current approaches may be limited by available data but improved by the incorporation of physiological data. Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb. (Caryophyllales: Ameranthaceae), is controlled across much of its introduced range in the United States of America by the alligatorweed flea beetle, Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae); however, insufficient control is observed at temperate latitudes. Investigations into alligatorweed thrips, Amynothrips andersoni O'Neill (Thysanoptera: Phlaeothripidae), indicate that they are more cold-tolerant with a broader predicted range. The upper limit of the chill injury zone (ULCIZ) and the sum of injurious temperatures (SIT) are measures that can be used to compare relative cold tolerance among biocontrol agents. Here we propose a method for integrating these parameters with weather data to predict overwintering mortality. The ULCIZ and SIT of Am. andersoni and Ag. hygrophila were experimentally determined, then habitat suitability for each species was modeled using the proposed method and 20 yr of weather data. ULCIZ was -2.94 and 4.52 °C, and SIT was 307.19 and 251.27 for Am. andersoni and Ag. hygrophila, respectively, indicating that Am. andersoni begins accumulating chill injury at a lower temperature than Ag. hygrophila and does so at a slower rate. Using this method, 91.8% of Al. philoxeroides's range in the USA was predicted to fall within highly or moderately suitable habitat for Am. andersoni, compared to 15.9% for Ag. hygrophila. Ranges predicted by the proposed method are similar to previous correlative ENMs.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvaf099","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ecological niche modelling provides a tool for making a priori predictions of habitat suitability for biological control agents. Current approaches may be limited by available data but improved by the incorporation of physiological data. Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb. (Caryophyllales: Ameranthaceae), is controlled across much of its introduced range in the United States of America by the alligatorweed flea beetle, Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae); however, insufficient control is observed at temperate latitudes. Investigations into alligatorweed thrips, Amynothrips andersoni O'Neill (Thysanoptera: Phlaeothripidae), indicate that they are more cold-tolerant with a broader predicted range. The upper limit of the chill injury zone (ULCIZ) and the sum of injurious temperatures (SIT) are measures that can be used to compare relative cold tolerance among biocontrol agents. Here we propose a method for integrating these parameters with weather data to predict overwintering mortality. The ULCIZ and SIT of Am. andersoni and Ag. hygrophila were experimentally determined, then habitat suitability for each species was modeled using the proposed method and 20 yr of weather data. ULCIZ was -2.94 and 4.52 °C, and SIT was 307.19 and 251.27 for Am. andersoni and Ag. hygrophila, respectively, indicating that Am. andersoni begins accumulating chill injury at a lower temperature than Ag. hygrophila and does so at a slower rate. Using this method, 91.8% of Al. philoxeroides's range in the USA was predicted to fall within highly or moderately suitable habitat for Am. andersoni, compared to 15.9% for Ag. hygrophila. Ranges predicted by the proposed method are similar to previous correlative ENMs.

提出了一种利用热伤害和天气数据估算杂草生物防治剂生境适宜性的方法。
生态位模型为对生物防治剂的生境适宜性进行先验预测提供了一种工具。目前的方法可能受到现有数据的限制,但由于纳入了生理数据而得到改进。短吻鳄草,互生草Griseb。在美国的大部分引种范围内,被短吻鳄草蚤甲虫、喜水的agagicles Selman和Vogt(鞘翅目:金龟科)控制;然而,在温带地区观察到的控制不足。对短吻鳄蓟马(Amynothrips andersoni O'Neill)的研究表明,它们具有更强的耐寒性和更广泛的预测范围。冻害区上限(ULCIZ)和冻害温度总和(SIT)是比较不同生物防治剂相对耐寒性的指标。在这里,我们提出了一种将这些参数与天气数据相结合的方法来预测越冬死亡率。美国的ULCIZ和SIT。安德森和Ag。通过实验确定了喜湿植物的种类,然后利用所提出的方法和20年的气象资料对每个物种的生境适宜性进行了建模。Am的ULCIZ分别为-2.94和4.52°C, SIT分别为307.19和251.27°C。安德森和Ag。分别为嗜湿菌,表明Am。andersoni在低于Ag的温度下开始积累冷伤。它是嗜湿的,而且速度较慢。利用该方法,预测美国91.8%的褐黄铝分布范围属于褐黄铝高度或中度适宜生境。相比之下,Ag的这一比例为15.9%。hygrophila。该方法预测的范围与以前的相关enm相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信