{"title":"Photocatalytic C-I Borylation via Halogen Bond-Enabled Electron Transfer: A Strategy for Generating Aryl Radicals from Haloarenes.","authors":"Eiji Yamaguchi, Tomohiro Yasuda, Akichika Itoh","doi":"10.1248/cpb.c25-00375","DOIUrl":null,"url":null,"abstract":"<p><p>We report the development of triarylphenol-based photocatalysts that promote C-I bond borylation via halogen bonding (XB) interactions under visible-light irradiation. Traditional phenol system reactions often suffer from phenoxyl radical instability, limiting their catalytic utility. To overcome this issue, we designed sterically and electronically tuned triarylphenols that stabilize radical intermediates while maintaining high photoreactivity. Systematic evaluation revealed that 2,4,6-triphenylphenol efficiently facilitates photoinduced electron transfer (PET) and suppresses undesired side reactions such as phenol decomposition. The optimized reaction conditions enabled a broad substrate scope, showing efficient arylboronic ester formation. Density functional theory calculations confirmed the formation of XB complexes with charge-transfer character, providing mechanistic support for the PET pathway. This work shows the potential of rationally designed phenols as XB acceptors and offers a sustainable approach for C-I bond functionalization.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 10","pages":"944-950"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c25-00375","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report the development of triarylphenol-based photocatalysts that promote C-I bond borylation via halogen bonding (XB) interactions under visible-light irradiation. Traditional phenol system reactions often suffer from phenoxyl radical instability, limiting their catalytic utility. To overcome this issue, we designed sterically and electronically tuned triarylphenols that stabilize radical intermediates while maintaining high photoreactivity. Systematic evaluation revealed that 2,4,6-triphenylphenol efficiently facilitates photoinduced electron transfer (PET) and suppresses undesired side reactions such as phenol decomposition. The optimized reaction conditions enabled a broad substrate scope, showing efficient arylboronic ester formation. Density functional theory calculations confirmed the formation of XB complexes with charge-transfer character, providing mechanistic support for the PET pathway. This work shows the potential of rationally designed phenols as XB acceptors and offers a sustainable approach for C-I bond functionalization.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.