Improving the accuracy and precision of disease identification when utilizing EHR data for research: the case for hepatocellular carcinoma.

IF 1.7 Q2 MULTIDISCIPLINARY SCIENCES
Carrie R Wong, Yvonne N Flores, Analissa Avila, Lina Tieu, Catherine M Crespi, Folasade P May, Douglas S Bell, Beth Glenn, Roshan Bastani
{"title":"Improving the accuracy and precision of disease identification when utilizing EHR data for research: the case for hepatocellular carcinoma.","authors":"Carrie R Wong, Yvonne N Flores, Analissa Avila, Lina Tieu, Catherine M Crespi, Folasade P May, Douglas S Bell, Beth Glenn, Roshan Bastani","doi":"10.1186/s13104-025-07465-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We assessed the performance of International Classification of Diseases (ICD) codes to identify patients with hepatocellular carcinoma (HCC) in a large academic health system and determined whether employing an algorithm using a combination of ICD codes could deliver higher accuracy and precision than single ICD codes in identifying HCC cases using electronic health record (EHR) data.</p><p><strong>Results: </strong>The use of a single ICD code entry for HCC (ICD-9-CM 155.0 or ICD-10-CM C22.0) in our cohort of 1,007 established ambulatory care patients with potential HCC yielded 58% false positives (not true HCC cases) based on chart reviews. We developed an ICD code-based algorithm that prioritized positive predictive value (PPV), F-score, and accuracy to minimize false positives and negatives. Using manual chart reviews as the gold standard, the highest performing algorithm required at least 10 ICD code entries for HCC and the sum of ICD code entries for HCC to exceed the sum of ICD code entries for non-HCC malignancies. The algorithm demonstrated high performance (PPV 97.4%, F-score 0.92, accuracy 94%), which was internally validated (PPV 92.3%, F-score 0.90, accuracy 91%) using a separate sample of 285 cancer registry cases. Our findings support the need to assess the accuracy and precision of ICD codes before using EHR data to study HCC more broadly.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"410"},"PeriodicalIF":1.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07465-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: We assessed the performance of International Classification of Diseases (ICD) codes to identify patients with hepatocellular carcinoma (HCC) in a large academic health system and determined whether employing an algorithm using a combination of ICD codes could deliver higher accuracy and precision than single ICD codes in identifying HCC cases using electronic health record (EHR) data.

Results: The use of a single ICD code entry for HCC (ICD-9-CM 155.0 or ICD-10-CM C22.0) in our cohort of 1,007 established ambulatory care patients with potential HCC yielded 58% false positives (not true HCC cases) based on chart reviews. We developed an ICD code-based algorithm that prioritized positive predictive value (PPV), F-score, and accuracy to minimize false positives and negatives. Using manual chart reviews as the gold standard, the highest performing algorithm required at least 10 ICD code entries for HCC and the sum of ICD code entries for HCC to exceed the sum of ICD code entries for non-HCC malignancies. The algorithm demonstrated high performance (PPV 97.4%, F-score 0.92, accuracy 94%), which was internally validated (PPV 92.3%, F-score 0.90, accuracy 91%) using a separate sample of 285 cancer registry cases. Our findings support the need to assess the accuracy and precision of ICD codes before using EHR data to study HCC more broadly.

利用电子病历数据进行研究时提高疾病识别的准确性和精密度:以肝细胞癌为例。
目的:我们评估了国际疾病分类(ICD)代码在大型学术卫生系统中识别肝细胞癌(HCC)患者的性能,并确定使用ICD代码组合的算法在使用电子健康记录(EHR)数据识别HCC病例时是否比使用单一ICD代码提供更高的准确性和精度。结果:在我们的1007例有潜在HCC的门诊患者队列中,使用单一的ICD代码条目(ICD-9- cm 155.0或ICD-10- cm C22.0),根据图表回顾,产生了58%的假阳性(非真实HCC病例)。我们开发了一种基于ICD代码的算法,该算法优先考虑阳性预测值(PPV)、f分数和准确性,以最大限度地减少假阳性和阴性。以手工图表评审为金标准,性能最高的算法需要至少10个HCC的ICD代码条目,并且HCC的ICD代码条目的总和超过非HCC恶性肿瘤的ICD代码条目的总和。该算法表现出了很高的性能(PPV 97.4%, f得分0.92,准确率94%),并在285例癌症登记病例的单独样本中进行了内部验证(PPV 92.3%, f得分0.90,准确率91%)。我们的研究结果支持在使用电子病历数据更广泛地研究HCC之前评估ICD代码的准确性和精确性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Research Notes
BMC Research Notes Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍: BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信