Ferrihydrite-biochar augments ecological restoration in reclaimed coral islands via dual pathways: Antioxidant system stimulation and microbial metabolic mediated C/N cycling.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Pengfei Gan, Yiping Chen, Li Zhou, Yunyi Li, Jialiang Liang, Zhiwei Zhao
{"title":"Ferrihydrite-biochar augments ecological restoration in reclaimed coral islands via dual pathways: Antioxidant system stimulation and microbial metabolic mediated C/N cycling.","authors":"Pengfei Gan, Yiping Chen, Li Zhou, Yunyi Li, Jialiang Liang, Zhiwei Zhao","doi":"10.1016/j.envres.2025.122979","DOIUrl":null,"url":null,"abstract":"<p><p>Reclaimed coral islands are facing serious challenges of vegetation restoration and ecological function reconstruction due to the salinity stress and nutrient scarcity. Ferrihydrite-, goethite-, magnetite-, and hematite-loaded biochars (FBC, GBC, MBC, HBC) were synthesized to enhance ecological restoration. Pot experiments with Ipomoea pes-caprae showed FBC outperformed controls and raw biochar, boosting plant fresh weight (63.9 %), height (18.1 %), and chlorophyll (111.3 %) while elevating SOD (407 %) and POD (143 %) activities, reducing MDA (41.2 %). FBC increased soil organic matter, enriched Micropruina and Pseudomonadota microbes, and enhanced microbial community stability. Functional genomics revealed upregulated glycolysis, TCA cycle, and nitrate to ammonium genes under FBC. MBC activated denitrification, removing nitrate effectively but causing nitrogen loss that limited chlorophyll synthesis. Iron oxide types critically influenced soil-plant-microbe interactions, with FBC balancing nutrient regulation, stress tolerance, and microbial-driven carbon/nitrogen cycling. This study revealed the effects of iron oxide types on soil-plant-microorganisms, and provided an integrated improvement strategy for coral island ecological restoration that balanced nutrient regulation, stress tolerance enhancement, and microbial function strengthening.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"122979"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2025.122979","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reclaimed coral islands are facing serious challenges of vegetation restoration and ecological function reconstruction due to the salinity stress and nutrient scarcity. Ferrihydrite-, goethite-, magnetite-, and hematite-loaded biochars (FBC, GBC, MBC, HBC) were synthesized to enhance ecological restoration. Pot experiments with Ipomoea pes-caprae showed FBC outperformed controls and raw biochar, boosting plant fresh weight (63.9 %), height (18.1 %), and chlorophyll (111.3 %) while elevating SOD (407 %) and POD (143 %) activities, reducing MDA (41.2 %). FBC increased soil organic matter, enriched Micropruina and Pseudomonadota microbes, and enhanced microbial community stability. Functional genomics revealed upregulated glycolysis, TCA cycle, and nitrate to ammonium genes under FBC. MBC activated denitrification, removing nitrate effectively but causing nitrogen loss that limited chlorophyll synthesis. Iron oxide types critically influenced soil-plant-microbe interactions, with FBC balancing nutrient regulation, stress tolerance, and microbial-driven carbon/nitrogen cycling. This study revealed the effects of iron oxide types on soil-plant-microorganisms, and provided an integrated improvement strategy for coral island ecological restoration that balanced nutrient regulation, stress tolerance enhancement, and microbial function strengthening.

水合铁生物炭通过刺激抗氧化系统和微生物代谢介导的C/N循环的双重途径增强了填海珊瑚岛的生态恢复。
由于盐度胁迫和营养物质匮乏,填海珊瑚岛面临着植被恢复和生态功能重建的严峻挑战。合成了含铁水铁矿、针铁矿、磁铁矿和赤铁矿的生物炭(FBC、GBC、MBC、HBC),以增强生态恢复。盆栽试验结果表明,FBC处理效果优于对照和生炭处理,提高了植株鲜重(63.9%)、株高(18.1%)和叶绿素(111.3%),提高了SOD(407%)和POD(143%)活性,降低了MDA(41.2%)。FBC增加了土壤有机质,丰富了微普鲁纳菌和假单胞菌,提高了微生物群落的稳定性。功能基因组学显示,FBC下糖酵解、TCA循环和硝酸盐转铵基因上调。MBC激活反硝化,有效去除硝酸盐,但造成氮损失,限制叶绿素合成。氧化铁类型严重影响土壤-植物-微生物的相互作用,与FBC平衡养分调节,胁迫耐受性和微生物驱动的碳/氮循环。本研究揭示了不同类型氧化铁对土壤-植物-微生物的影响,为珊瑚岛生态修复提供了平衡调节养分、增强抗逆性和增强微生物功能的综合改善策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信