Electrospinning and Cross-Linking of Gelatin-Poly(2-Isopropenyl-2-Oxazoline) Nanofibers: A Route to Stable Hybrid Biomaterials.

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Elena Olăreț, Emilian Ghibu, Aida Șelaru, Sorina Dinescu, Bogdan Ștefan Vasile, Valentin Victor Jerca, Izabela-Cristina Stancu, Florica Adriana Jerca
{"title":"Electrospinning and Cross-Linking of Gelatin-Poly(2-Isopropenyl-2-Oxazoline) Nanofibers: A Route to Stable Hybrid Biomaterials.","authors":"Elena Olăreț, Emilian Ghibu, Aida Șelaru, Sorina Dinescu, Bogdan Ștefan Vasile, Valentin Victor Jerca, Izabela-Cristina Stancu, Florica Adriana Jerca","doi":"10.1002/marc.202500576","DOIUrl":null,"url":null,"abstract":"<p><p>Engineering biohybrid nanofibers with tailored morphologies addresses the need to meet various requirements in medical applications. Blending natural and synthetic polymers in a synergistic manner, though often challenging, improves the physical properties of natural polymers and the biocompatibility of synthetic ones. The present work showcases a straightforward protocol to manufacture biohybrid hydrophilic nanofibers by electrospinning fish gelatin (FG) with poly(2-isoproprenyl-2-oxazoline) (PiPOx) from aqueous solution. FTIR spectroscopy and thermal analysis demonstrate favorable interactions within the FG-PiPOx biohybrid nanofiber mats, indicating that the electrospinning process not only enables nanofiber formation, but also promotes preferential interchain arrangements that facilitate in situ cross-linking, eliminating the need of catalysts or additional cross-linkers. Furthermore, the thermal and aqueous stability of the biohybrid nanofiber mats significantly improves by dual cross-linking the two polymers with small organic cross-linkers, taking advantage of the well-known reaction of PiPOx with carboxylic acids and of FG with glutaraldehyde. The cross-linked biohybrids maintain a stable nanosized morphology and exhibit improved cell-interactive properties, particularly in hybrids with moderate PiPOx content. The FG-PiPOx biohybrids show superior cell-interactive properties compared to pristine gelatin due to their favorable surface energy and hydrophilicity, highlighting the advantages of the hybrid materials over the individual polymers.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00576"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500576","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering biohybrid nanofibers with tailored morphologies addresses the need to meet various requirements in medical applications. Blending natural and synthetic polymers in a synergistic manner, though often challenging, improves the physical properties of natural polymers and the biocompatibility of synthetic ones. The present work showcases a straightforward protocol to manufacture biohybrid hydrophilic nanofibers by electrospinning fish gelatin (FG) with poly(2-isoproprenyl-2-oxazoline) (PiPOx) from aqueous solution. FTIR spectroscopy and thermal analysis demonstrate favorable interactions within the FG-PiPOx biohybrid nanofiber mats, indicating that the electrospinning process not only enables nanofiber formation, but also promotes preferential interchain arrangements that facilitate in situ cross-linking, eliminating the need of catalysts or additional cross-linkers. Furthermore, the thermal and aqueous stability of the biohybrid nanofiber mats significantly improves by dual cross-linking the two polymers with small organic cross-linkers, taking advantage of the well-known reaction of PiPOx with carboxylic acids and of FG with glutaraldehyde. The cross-linked biohybrids maintain a stable nanosized morphology and exhibit improved cell-interactive properties, particularly in hybrids with moderate PiPOx content. The FG-PiPOx biohybrids show superior cell-interactive properties compared to pristine gelatin due to their favorable surface energy and hydrophilicity, highlighting the advantages of the hybrid materials over the individual polymers.

明胶-聚(2-异丙烯-2-恶唑啉)纳米纤维的静电纺丝和交联:一条通向稳定杂化生物材料的途径。
具有定制形态的工程生物杂化纳米纤维解决了满足医疗应用各种要求的需要。以协同方式混合天然聚合物和合成聚合物,虽然经常具有挑战性,但可以改善天然聚合物的物理性能和合成聚合物的生物相容性。目前的工作展示了一种简单的方案,通过静电纺丝鱼明胶(FG)和聚(2-异丙基-2-恶唑啉)(PiPOx)从水溶液中制造生物杂化亲水性纳米纤维。FTIR光谱和热分析表明,FG-PiPOx生物杂化纳米纤维垫内部存在良好的相互作用,这表明静电纺丝工艺不仅可以形成纳米纤维,而且可以促进优先的链间排列,从而促进原位交联,从而消除了对催化剂或其他交联剂的需求。此外,利用众所周知的PiPOx与羧酸的反应和FG与戊二醛的反应,用小有机交联剂将两种聚合物进行双交联,显著提高了生物杂化纳米纤维垫的热稳定性和水稳定性。交联的生物杂交种保持稳定的纳米级形态,并表现出更好的细胞相互作用特性,特别是在PiPOx含量适中的杂交种中。由于FG-PiPOx生物杂交种具有良好的表面能和亲水性,因此与原始明胶相比,FG-PiPOx生物杂交种表现出优越的细胞相互作用特性,突出了杂交种材料相对于单个聚合物的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信