Tensor networks for quantum computing

IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Aleksandr Berezutskii, Minzhao Liu, Atithi Acharya, Roman Ellerbrock, Johnnie Gray, Reza Haghshenas, Zichang He, Abid Khan, Viacheslav Kuzmin, Dmitry Lyakh, Danylo Lykov, Salvatore Mandrà, Christopher Mansell, Alexey Melnikov, Artem Melnikov, Vladimir Mironov, Dmitry Morozov, Florian Neukart, Alberto Nocera, Michael A. Perlin, Michael Perelshtein, Matthew Steinberg, Ruslan Shaydulin, Benjamin Villalonga, Markus Pflitsch, Marco Pistoia, Valerii Vinokur, Yuri Alexeev
{"title":"Tensor networks for quantum computing","authors":"Aleksandr Berezutskii, Minzhao Liu, Atithi Acharya, Roman Ellerbrock, Johnnie Gray, Reza Haghshenas, Zichang He, Abid Khan, Viacheslav Kuzmin, Dmitry Lyakh, Danylo Lykov, Salvatore Mandrà, Christopher Mansell, Alexey Melnikov, Artem Melnikov, Vladimir Mironov, Dmitry Morozov, Florian Neukart, Alberto Nocera, Michael A. Perlin, Michael Perelshtein, Matthew Steinberg, Ruslan Shaydulin, Benjamin Villalonga, Markus Pflitsch, Marco Pistoia, Valerii Vinokur, Yuri Alexeev","doi":"10.1038/s42254-025-00853-1","DOIUrl":null,"url":null,"abstract":"Tensor networks have become a useful tool in many areas of physics, especially in quantum information science and quantum computing, where they are used to represent and manipulate quantum states and processes. The original use of tensor networks is the simulation of quantum systems, where tensor networks provide compressed representations of the structured systems. As research into quantum computing and tensor networks progresses, a plethora of new applications are becoming increasingly relevant. This Technical Review discusses the diverse applications of tensor networks to demonstrate that they are an important instrument for quantum computing. Specifically, we summarize the application of tensor networks in various domains of quantum computing, including simulation of quantum computation, quantum circuit synthesis, quantum error correction and mitigation, and quantum machine learning. Finally, we provide an outlook on the opportunities that tensor-network techniques provide and the challenges they may face in the future. Tensor networks provide a powerful tool for understanding and improving quantum computing. This Technical Review discusses applications in simulation, circuit synthesis, error correction and mitigation, and quantum machine learning.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 10","pages":"581-593"},"PeriodicalIF":39.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00853-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor networks have become a useful tool in many areas of physics, especially in quantum information science and quantum computing, where they are used to represent and manipulate quantum states and processes. The original use of tensor networks is the simulation of quantum systems, where tensor networks provide compressed representations of the structured systems. As research into quantum computing and tensor networks progresses, a plethora of new applications are becoming increasingly relevant. This Technical Review discusses the diverse applications of tensor networks to demonstrate that they are an important instrument for quantum computing. Specifically, we summarize the application of tensor networks in various domains of quantum computing, including simulation of quantum computation, quantum circuit synthesis, quantum error correction and mitigation, and quantum machine learning. Finally, we provide an outlook on the opportunities that tensor-network techniques provide and the challenges they may face in the future. Tensor networks provide a powerful tool for understanding and improving quantum computing. This Technical Review discusses applications in simulation, circuit synthesis, error correction and mitigation, and quantum machine learning.

Abstract Image

量子计算的张量网络
张量网络已经成为许多物理领域的有用工具,特别是在量子信息科学和量子计算领域,它们被用来表示和操纵量子态和过程。张量网络的最初用途是模拟量子系统,其中张量网络提供结构化系统的压缩表示。随着对量子计算和张量网络的研究进展,大量的新应用变得越来越相关。本技术评论讨论了张量网络的各种应用,以证明它们是量子计算的重要工具。具体来说,我们总结了张量网络在量子计算各个领域的应用,包括量子计算模拟、量子电路合成、量子纠错和缓解以及量子机器学习。最后,我们展望了张量网络技术提供的机会以及它们在未来可能面临的挑战。张量网络为理解和改进量子计算提供了一个强大的工具。本技术评论讨论了在仿真、电路合成、纠错和缓解以及量子机器学习方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信