Biplab Chaterjee, Gal Gozlan, Chen Abramovitch-Dahan, Anton Davydok, Anat Reiner-Benaim, Johannes Krug, Katharina Jähn-Rickert, Björn Busse, Noam Levaot
{"title":"The Role of GPR39 in Regulating Osteoblast Function, Bone Matrix Quality, and Gender-Specific Bone Homeostasis","authors":"Biplab Chaterjee, Gal Gozlan, Chen Abramovitch-Dahan, Anton Davydok, Anat Reiner-Benaim, Johannes Krug, Katharina Jähn-Rickert, Björn Busse, Noam Levaot","doi":"10.1002/jcp.70095","DOIUrl":null,"url":null,"abstract":"<p>GPR39, a zinc-sensing receptor, is essential for bone homeostasis in male mice through regulation of osteoblast function and matrix composition. This study examined the effects of GPR39 deficiency in female mice using both global and osteoblast lineage-specific GPR39 knockout models (<i>Gpr39</i><sup><i>Ob</i>−<i>/Ob</i>−</sup>). In vivo, GPR39-deficient female mice exhibited reduced bone mass, increased mineralization rates, and significantly lower and more variable serum levels of pro-collagen type I N-propeptide (PINP), indicating impaired collagen synthesis and matrix remodeling. OVX models further demonstrated that GPR39 deficiency exacerbates estrogen-deficiency-induced bone loss, highlighting its protective role in postmenopausal-like states. Osteoblast lineage-specific GPR39 deletion replicated the skeletal abnormalities observed in global knockouts, revealing that GPR39 activity in the osteoblast lineage is indispensable for proper collagen deposition and mineralization. Western blot analysis of <i>Gpr39</i><sup><i>Ob</i>−<i>/Ob</i>−</sup> osteoblasts confirmed reduced extracellular collagen levels, while quantitative mRNA analysis of Col1a2 revealed zinc signaling through GPR39 as a key regulator of collagen production. Zinc-induced Col1a2 expression, dependent on GPR39 and mediated via Gα<sub>q</sub> signaling, was abolished in GPR39-deficient osteoblasts. These findings provide insights into how zinc signaling via GPR39 regulates osteoblast function and collagen synthesis, emphasizing its role in maintaining matrix composition. Targeting GPR39 may offer novel therapeutic strategies for osteoporosis and other bone disorders characterized by impaired matrix remodeling.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.70095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
GPR39, a zinc-sensing receptor, is essential for bone homeostasis in male mice through regulation of osteoblast function and matrix composition. This study examined the effects of GPR39 deficiency in female mice using both global and osteoblast lineage-specific GPR39 knockout models (Gpr39Ob−/Ob−). In vivo, GPR39-deficient female mice exhibited reduced bone mass, increased mineralization rates, and significantly lower and more variable serum levels of pro-collagen type I N-propeptide (PINP), indicating impaired collagen synthesis and matrix remodeling. OVX models further demonstrated that GPR39 deficiency exacerbates estrogen-deficiency-induced bone loss, highlighting its protective role in postmenopausal-like states. Osteoblast lineage-specific GPR39 deletion replicated the skeletal abnormalities observed in global knockouts, revealing that GPR39 activity in the osteoblast lineage is indispensable for proper collagen deposition and mineralization. Western blot analysis of Gpr39Ob−/Ob− osteoblasts confirmed reduced extracellular collagen levels, while quantitative mRNA analysis of Col1a2 revealed zinc signaling through GPR39 as a key regulator of collagen production. Zinc-induced Col1a2 expression, dependent on GPR39 and mediated via Gαq signaling, was abolished in GPR39-deficient osteoblasts. These findings provide insights into how zinc signaling via GPR39 regulates osteoblast function and collagen synthesis, emphasizing its role in maintaining matrix composition. Targeting GPR39 may offer novel therapeutic strategies for osteoporosis and other bone disorders characterized by impaired matrix remodeling.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.