A String-Like Realization of Hyperbolic Kac–Moody Algebras

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Saverio Capolongo, Axel Kleinschmidt, Hannes Malcha, Hermann Nicolai
{"title":"A String-Like Realization of Hyperbolic Kac–Moody Algebras","authors":"Saverio Capolongo,&nbsp;Axel Kleinschmidt,&nbsp;Hannes Malcha,&nbsp;Hermann Nicolai","doi":"10.1007/s00220-025-05398-z","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new approach to studying hyperbolic Kac–Moody algebras, focussing on the rank-3 algebra <span>\\({\\mathfrak {F}}\\)</span> first investigated by Feingold and Frenkel. Our approach is based on the concrete realization of this Lie algebra in terms of a Hilbert space of transverse and longitudinal physical string states, which are expressed in a basis using DDF operators. When decomposed under its affine subalgebra <span>\\({A_1^{(1)}}\\)</span>, the algebra <span>\\({\\mathfrak {F}}\\)</span> decomposes into an infinite sum of affine representation spaces of <span>\\({A_1^{(1)}}\\)</span> for all levels <span>\\(\\ell \\in \\mathbb {Z}\\)</span>. For <span>\\(|\\ell | &gt;1\\)</span> there appear in addition coset Virasoro representations for all minimal models of central charge <span>\\(c&lt;1\\)</span>, but the different level-<span>\\(\\ell \\)</span> sectors of <span>\\({\\mathfrak {F}}\\)</span> do not form proper representations of these because they are incompletely realized in <span>\\({\\mathfrak {F}}\\)</span>. To get around this problem we propose to nevertheless exploit the coset Virasoro algebra for each level by identifying for each level a (for <span>\\(|\\ell |\\ge 3\\)</span> infinite) set of ‘Virasoro ground states’ that are not necessarily elements of <span>\\({\\mathfrak {F}}\\)</span> (in which case we refer to them as ‘virtual’), but from which the level-<span>\\(\\ell \\)</span> sectors of <span>\\({\\mathfrak {F}}\\)</span> can be fully generated by the joint action of affine and coset Virasoro raising operators. We conjecture (and present partial evidence) that the Virasoro ground states for <span>\\(|\\ell |\\ge 3\\)</span> in turn can be generated from a <i>finite</i> set of ‘maximal ground states’ by the additional action of the ‘spectator’ coset Virasoro raising operators present for all levels <span>\\(|\\ell | &gt; 2\\)</span>. Our results hint at an intriguing but so far elusive secret behind Einstein’s theory of gravity, with possibly important implications for quantum cosmology.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05398-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05398-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new approach to studying hyperbolic Kac–Moody algebras, focussing on the rank-3 algebra \({\mathfrak {F}}\) first investigated by Feingold and Frenkel. Our approach is based on the concrete realization of this Lie algebra in terms of a Hilbert space of transverse and longitudinal physical string states, which are expressed in a basis using DDF operators. When decomposed under its affine subalgebra \({A_1^{(1)}}\), the algebra \({\mathfrak {F}}\) decomposes into an infinite sum of affine representation spaces of \({A_1^{(1)}}\) for all levels \(\ell \in \mathbb {Z}\). For \(|\ell | >1\) there appear in addition coset Virasoro representations for all minimal models of central charge \(c<1\), but the different level-\(\ell \) sectors of \({\mathfrak {F}}\) do not form proper representations of these because they are incompletely realized in \({\mathfrak {F}}\). To get around this problem we propose to nevertheless exploit the coset Virasoro algebra for each level by identifying for each level a (for \(|\ell |\ge 3\) infinite) set of ‘Virasoro ground states’ that are not necessarily elements of \({\mathfrak {F}}\) (in which case we refer to them as ‘virtual’), but from which the level-\(\ell \) sectors of \({\mathfrak {F}}\) can be fully generated by the joint action of affine and coset Virasoro raising operators. We conjecture (and present partial evidence) that the Virasoro ground states for \(|\ell |\ge 3\) in turn can be generated from a finite set of ‘maximal ground states’ by the additional action of the ‘spectator’ coset Virasoro raising operators present for all levels \(|\ell | > 2\). Our results hint at an intriguing but so far elusive secret behind Einstein’s theory of gravity, with possibly important implications for quantum cosmology.

双曲Kac-Moody代数的类弦实现
我们提出了一种研究双曲Kac-Moody代数的新方法,重点关注由Feingold和Frenkel首先研究的3阶代数\({\mathfrak {F}}\)。我们的方法是基于这个李代数在横向和纵向物理弦状态的希尔伯特空间中的具体实现,这些状态是用DDF算子在基中表示的。当在其仿射子代数\({A_1^{(1)}}\)下分解时,代数\({\mathfrak {F}}\)分解为各级仿射表示空间\({A_1^{(1)}}\)的无限和\(\ell \in \mathbb {Z}\)。对于\(|\ell | >1\),对于中心电荷\(c<1\)的所有最小模型都出现了额外的coset Virasoro表示,但是\({\mathfrak {F}}\)的不同级别- \(\ell \)扇区并没有形成这些适当的表示,因为它们在\({\mathfrak {F}}\)中没有完全实现。为了解决这个问题,我们建议利用每一层的协集Virasoro代数,方法是为每一层确定一组(对于\(|\ell |\ge 3\)无限)“Virasoro基态”,这些基态不一定是\({\mathfrak {F}}\)的元素(在这种情况下,我们将它们称为“虚”),但是通过仿射和协集Virasoro提升算子的联合作用,可以完全生成\({\mathfrak {F}}\)的level- \(\ell \)区。我们推测(并提供部分证据)\(|\ell |\ge 3\)的Virasoro基态反过来可以由一组有限的“最大基态”产生,通过“观众”coset Virasoro提升算子在所有级别\(|\ell | > 2\)上的附加作用。我们的结果暗示了爱因斯坦引力理论背后一个有趣但迄今为止难以捉摸的秘密,可能对量子宇宙学有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信