Eigenstates and Spectral Projection for Quantized Baker’s Map

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Laura Shou
{"title":"Eigenstates and Spectral Projection for Quantized Baker’s Map","authors":"Laura Shou","doi":"10.1007/s00220-025-05440-0","DOIUrl":null,"url":null,"abstract":"<div><p>We extend the approach from Shou (Ann Henri Poincaré 24:2833–2875, 2023) to prove windowed spectral projection estimates and a generalized Weyl law for the (Weyl) quantized baker’s map on the torus. The spectral window is allowed to shrink in the semiclassical (large dimension) limit. As a consequence, we obtain a strengthening of the quantum ergodic theorem from Degli Esposti et al. (Commun Math Phys 263(2):325–352, 2006) to hold in shrinking spectral windows, a Weyl law on uniform spreading of eigenvalues, and statistics of random quasimodes. Using similar techniques, we also investigate random eigenbases of a different (non-Weyl) quantization, the Walsh-quantized baker’s map, which has high degeneracies in its spectrum. For such random eigenbases, we prove that Gaussian eigenstate statistics and QUE hold with high probability in the semiclassical limit.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05440-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05440-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the approach from Shou (Ann Henri Poincaré 24:2833–2875, 2023) to prove windowed spectral projection estimates and a generalized Weyl law for the (Weyl) quantized baker’s map on the torus. The spectral window is allowed to shrink in the semiclassical (large dimension) limit. As a consequence, we obtain a strengthening of the quantum ergodic theorem from Degli Esposti et al. (Commun Math Phys 263(2):325–352, 2006) to hold in shrinking spectral windows, a Weyl law on uniform spreading of eigenvalues, and statistics of random quasimodes. Using similar techniques, we also investigate random eigenbases of a different (non-Weyl) quantization, the Walsh-quantized baker’s map, which has high degeneracies in its spectrum. For such random eigenbases, we prove that Gaussian eigenstate statistics and QUE hold with high probability in the semiclassical limit.

量化贝克映射的特征态和谱投影
我们扩展了Shou (Ann Henri poincar 24:2833-2875, 2023)的方法,证明了环面上(Weyl)量化baker 's映射的窗谱投影估计和广义Weyl定律。允许光谱窗口在半经典(大尺寸)极限下收缩。因此,我们得到了Degli Esposti et al.(普通数学物理263(2):325-352,2006)的量子遍历定理的加强,以保持在缩小的谱窗,特征值均匀扩展的Weyl律,以及随机拟模的统计量。使用类似的技术,我们还研究了不同(非weyl)量化的随机特征基,即Walsh-quantized baker 's map,它在其谱中具有高简并性。对于这类随机特征基,我们证明了高斯特征态统计量和QUE在半经典极限下是高概率成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信