{"title":"Positive Geometries and Canonical Forms via Mixed Hodge Theory","authors":"Francis Brown, Clément Dupont","doi":"10.1007/s00220-025-05399-y","DOIUrl":null,"url":null,"abstract":"<div><p>“Positive geometries” are a class of semi-algebraic domains which admit a unique “canonical form”: a logarithmic form whose residues match the boundary structure of the domain. The study of such geometries is motivated by recent progress in particle physics, where the corresponding canonical forms are interpreted as the integrands of scattering amplitudes. We recast these concepts in the language of mixed Hodge theory, and identify “genus zero pairs” of complex algebraic varieties as a natural and general framework for the study of positive geometries and their canonical forms. In this framework, we prove some basic properties of canonical forms which have previously been proved or conjectured in the literature. We give many examples and study in detail the case of arrangements of hyperplanes and convex polytopes.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05399-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
“Positive geometries” are a class of semi-algebraic domains which admit a unique “canonical form”: a logarithmic form whose residues match the boundary structure of the domain. The study of such geometries is motivated by recent progress in particle physics, where the corresponding canonical forms are interpreted as the integrands of scattering amplitudes. We recast these concepts in the language of mixed Hodge theory, and identify “genus zero pairs” of complex algebraic varieties as a natural and general framework for the study of positive geometries and their canonical forms. In this framework, we prove some basic properties of canonical forms which have previously been proved or conjectured in the literature. We give many examples and study in detail the case of arrangements of hyperplanes and convex polytopes.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.