On the Satake Correspondence for the Equivariant Quantum Differential Equations and qKZ Difference Equations of Grassmannians

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Giordano Cotti, Alexander Varchenko
{"title":"On the Satake Correspondence for the Equivariant Quantum Differential Equations and qKZ Difference Equations of Grassmannians","authors":"Giordano Cotti,&nbsp;Alexander Varchenko","doi":"10.1007/s00220-025-05426-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the joint system of equivariant quantum differential equations (qDE) and qKZ difference equations for the Grassmannian <i>G</i>(<i>k</i>, <i>n</i>), which parametrizes <i>k</i>-dimensional subspaces of <span>\\({{\\mathbb {C}}}^n\\)</span>. First, we establish a connection between this joint system for <i>G</i>(<i>k</i>, <i>n</i>) and the corresponding system for the projective space <span>\\({{\\mathbb {P}}}^{n-1}\\)</span>. Specifically, we show that, under suitable <i>Satake identifications</i> of the equivariant cohomologies of <i>G</i>(<i>k</i>, <i>n</i>) and <span>\\({{\\mathbb {P}}}^{n-1}\\)</span>, the joint system for <i>G</i>(<i>k</i>, <i>n</i>) is gauge equivalent to a differential-difference system on the <i>k</i>-th exterior power of the cohomology of <span>\\({{\\mathbb {P}}}^{n-1}\\)</span>. Secondly, we demonstrate that the Б-theorem for Grassmannians, as stated in Cotti and Varchenko (Equivariant quantum differential equation and qKZ equations for a projective space: Stokes bases as exceptional collections, Stokes matrices as Gram matrices, and B-Theorem, Integrability, quantization, and geometry: dedicated to the memory of Boris Dubrovin, 1950, 2019, 2021), Tarasov and Varchenko (J Geom Phys 184:104711, 2023), is compatible with the Satake identification. This implies that the Б-theorem for <span>\\({{\\mathbb {P}}}^{n-1}\\)</span> extends to <i>G</i>(<i>k</i>, <i>n</i>) through the Satake identification. As a consequence, we derive determinantal formulas and new integral representations for multi-dimensional hypergeometric solutions of the joint qDE and qKZ system for <i>G</i>(<i>k</i>, <i>n</i>). Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ equations associated with <i>G</i>(<i>k</i>, <i>n</i>). We prove that the Stokes bases of solutions correspond to explicit <i>K</i>-theoretical classes of full exceptional collections in the derived category of equivariant coherent sheaves on <i>G</i>(<i>k</i>, <i>n</i>). Furthermore, we show that the Stokes matrices equal the Gram matrices of the equivariant Euler–Poincaré–Grothendieck pairing with respect to these exceptional <i>K</i>-theoretical bases.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05426-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05426-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the joint system of equivariant quantum differential equations (qDE) and qKZ difference equations for the Grassmannian G(kn), which parametrizes k-dimensional subspaces of \({{\mathbb {C}}}^n\). First, we establish a connection between this joint system for G(kn) and the corresponding system for the projective space \({{\mathbb {P}}}^{n-1}\). Specifically, we show that, under suitable Satake identifications of the equivariant cohomologies of G(kn) and \({{\mathbb {P}}}^{n-1}\), the joint system for G(kn) is gauge equivalent to a differential-difference system on the k-th exterior power of the cohomology of \({{\mathbb {P}}}^{n-1}\). Secondly, we demonstrate that the Б-theorem for Grassmannians, as stated in Cotti and Varchenko (Equivariant quantum differential equation and qKZ equations for a projective space: Stokes bases as exceptional collections, Stokes matrices as Gram matrices, and B-Theorem, Integrability, quantization, and geometry: dedicated to the memory of Boris Dubrovin, 1950, 2019, 2021), Tarasov and Varchenko (J Geom Phys 184:104711, 2023), is compatible with the Satake identification. This implies that the Б-theorem for \({{\mathbb {P}}}^{n-1}\) extends to G(kn) through the Satake identification. As a consequence, we derive determinantal formulas and new integral representations for multi-dimensional hypergeometric solutions of the joint qDE and qKZ system for G(kn). Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ equations associated with G(kn). We prove that the Stokes bases of solutions correspond to explicit K-theoretical classes of full exceptional collections in the derived category of equivariant coherent sheaves on G(kn). Furthermore, we show that the Stokes matrices equal the Gram matrices of the equivariant Euler–Poincaré–Grothendieck pairing with respect to these exceptional K-theoretical bases.

格拉斯曼人的等变量子微分方程和qKZ差分方程的Satake对应
我们考虑了参数化\({{\mathbb {C}}}^n\)的k维子空间的Grassmannian G(k, n)的等变量子微分方程(qDE)和qKZ差分方程的联合系统。首先,我们建立了G(k, n)的联合系统与对应的投影空间\({{\mathbb {P}}}^{n-1}\)的系统之间的联系。具体地说,我们证明了在G(k, n)和\({{\mathbb {P}}}^{n-1}\)的等变上同调的合适的Satake辨识下,G(k, n)的联合系统在\({{\mathbb {P}}}^{n-1}\)的上同调的k次外幂上是规范等价的微分-差分系统。其次,我们证明了Cotti和Varchenko(投影空间的等变量子微分方程和qKZ方程:Stokes基作为例外集合,Stokes矩阵作为Gram矩阵,b定理,可积性,量化和几何:专用于Boris Dubrovin的记忆,1950年,2019年,2021年),Tarasov和Varchenko (J Geom Phys 184:10 4711,2023)中所述的Grassmannians的Б-theorem与Satake识别是相容的。这意味着\({{\mathbb {P}}}^{n-1}\)的Б-theorem通过Satake标识扩展到G(k, n)。因此,我们导出了G(k, n)的qDE和qKZ联合系统多维超几何解的行列式公式和新的积分表示。最后,我们分析了与G(k, n)相关的qDE和qKZ方程联合系统的Stokes现象。证明了解的Stokes基对应于G(k, n)上等变相干束的派生范畴中满异常集合的显式k理论类。进一步,我们证明了Stokes矩阵等于关于这些例外的k理论基的等变euler - poincar - grothendieck配对的Gram矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信