Meromorphic Differentials, Twisted DR Cycles and Quantum Integrable Hierarchies

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xavier Blot, Paolo Rossi
{"title":"Meromorphic Differentials, Twisted DR Cycles and Quantum Integrable Hierarchies","authors":"Xavier Blot,&nbsp;Paolo Rossi","doi":"10.1007/s00220-025-05464-6","DOIUrl":null,"url":null,"abstract":"<div><p>We define twisted versions of the classical and quantum double ramification hierarchy construction based on intersection theory of the strata of meromorphic differentials in the moduli space of stable curves and <i>k</i>-twisted double ramification cycles for <span>\\(k=1\\)</span>, respectively, we prove their integrability and tau symmetry and study their connection. We apply the construction to the case of the trivial cohomological field theory to find it produces the KdV hierarchy, although its relation to the untwisted case is nontrivial. The key role of the KdV hierarchy in controlling the intersection theory of several natural tautological classes translates this relation into a series of remarkable identities between intersection numbers involving psi-classes, Hodge classes, Norbury’s theta class and the strata of meromorphic differentials.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05464-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05464-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We define twisted versions of the classical and quantum double ramification hierarchy construction based on intersection theory of the strata of meromorphic differentials in the moduli space of stable curves and k-twisted double ramification cycles for \(k=1\), respectively, we prove their integrability and tau symmetry and study their connection. We apply the construction to the case of the trivial cohomological field theory to find it produces the KdV hierarchy, although its relation to the untwisted case is nontrivial. The key role of the KdV hierarchy in controlling the intersection theory of several natural tautological classes translates this relation into a series of remarkable identities between intersection numbers involving psi-classes, Hodge classes, Norbury’s theta class and the strata of meromorphic differentials.

亚纯微分、扭曲DR循环和量子可积层次
基于稳定曲线模空间中亚纯微分层的交点理论,定义了经典和量子双分枝层次结构的扭曲版本和k-扭曲双分枝循环 \(k=1\)分别证明了它们的可积性和对称性,并研究了它们之间的联系。我们将这种构造应用于平凡上同场理论的情况,发现它产生了KdV层次,尽管它与非扭曲情况的关系是非平凡的。KdV层次在控制几个自然同音类的相交理论中的关键作用将这种关系转化为一系列涉及psi类、Hodge类、Norbury的θ类和亚纯微分层的相交数之间的显著恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信