Periodicity of Atomic Structure in a Thomas-Fermi Mean-Field Model

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
August Bjerg, Jan Philip Solovej
{"title":"Periodicity of Atomic Structure in a Thomas-Fermi Mean-Field Model","authors":"August Bjerg,&nbsp;Jan Philip Solovej","doi":"10.1007/s00220-025-05418-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a Thomas-Fermi mean-field model for large neutral atoms. That is, Schrödinger operators <span>\\(H_Z^{\\text {TF}}=-\\Delta -\\Phi _Z^{\\text {TF}}\\)</span> in three-dimensional space, where <i>Z</i> is the nuclear charge of the atom and <span>\\(\\Phi _Z^{\\text {TF}}\\)</span> is a mean-field potential coming from the Thomas-Fermi density functional theory for atoms. For any sequence <span>\\(Z_n\\rightarrow \\infty \\)</span> we prove that the corresponding sequence <span>\\(H_{Z_n}^{\\text {TF}}\\)</span> is convergent in the strong resolvent sense if and only if <span>\\(D_{\\text {cl}}Z_n^{1/3}\\)</span> is convergent modulo 1 for a universal constant <span>\\(D_{\\text {cl}}\\)</span>. This can be interpreted in terms of periodicity of large atoms. We also characterize the possible limiting operators (infinite atoms) as a periodic one-parameter family of self-adjoint extensions of <span>\\(-\\Delta -C_\\infty |x |^{-4}\\)</span> for an explicit number <span>\\(C_\\infty \\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05418-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05418-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Thomas-Fermi mean-field model for large neutral atoms. That is, Schrödinger operators \(H_Z^{\text {TF}}=-\Delta -\Phi _Z^{\text {TF}}\) in three-dimensional space, where Z is the nuclear charge of the atom and \(\Phi _Z^{\text {TF}}\) is a mean-field potential coming from the Thomas-Fermi density functional theory for atoms. For any sequence \(Z_n\rightarrow \infty \) we prove that the corresponding sequence \(H_{Z_n}^{\text {TF}}\) is convergent in the strong resolvent sense if and only if \(D_{\text {cl}}Z_n^{1/3}\) is convergent modulo 1 for a universal constant \(D_{\text {cl}}\). This can be interpreted in terms of periodicity of large atoms. We also characterize the possible limiting operators (infinite atoms) as a periodic one-parameter family of self-adjoint extensions of \(-\Delta -C_\infty |x |^{-4}\) for an explicit number \(C_\infty \).

Thomas-Fermi平均场模型中原子结构的周期性
我们考虑大中性原子的托马斯-费米平均场模型。也就是说,Schrödinger算符\(H_Z^{\text {TF}}=-\Delta -\Phi _Z^{\text {TF}}\)在三维空间中,其中Z是原子的核电荷,\(\Phi _Z^{\text {TF}}\)是来自托马斯-费米原子密度泛函理论的平均场势。对于任意序列\(Z_n\rightarrow \infty \),我们证明了对应的序列\(H_{Z_n}^{\text {TF}}\)在强解意义下收敛当且仅当\(D_{\text {cl}}Z_n^{1/3}\)对一个泛常数\(D_{\text {cl}}\)模1收敛。这可以用大原子的周期性来解释。对于显式数\(C_\infty \),我们还将可能的极限算子(无限原子)表征为周期单参数族\(-\Delta -C_\infty |x |^{-4}\)的自伴随扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信