Inclusions of Standard Subspaces

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ricardo Correa da Silva, Gandalf Lechner
{"title":"Inclusions of Standard Subspaces","authors":"Ricardo Correa da Silva,&nbsp;Gandalf Lechner","doi":"10.1007/s00220-025-05458-4","DOIUrl":null,"url":null,"abstract":"<div><p>Standard subspaces are closed real subspaces of a complex Hilbert space that appear naturally in Tomita–Takesaki modular theory and its applications to quantum field theory. In this article, inclusions of standard subspaces are studied independently of von Neumann algebras. Several new methods for their investigation are developed, related to polarizers, Gelfand triples defined by modular data, and extensions of modular operators. A particular class of examples that arises from the fundamental irreducible building block of a conformal field theory on the line is analyzed in detail.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05458-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05458-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Standard subspaces are closed real subspaces of a complex Hilbert space that appear naturally in Tomita–Takesaki modular theory and its applications to quantum field theory. In this article, inclusions of standard subspaces are studied independently of von Neumann algebras. Several new methods for their investigation are developed, related to polarizers, Gelfand triples defined by modular data, and extensions of modular operators. A particular class of examples that arises from the fundamental irreducible building block of a conformal field theory on the line is analyzed in detail.

标准子空间的包含
标准子空间是复希尔伯特空间的闭实子空间,在富田-竹崎模理论及其在量子场论中的应用中自然出现。本文研究了独立于冯·诺伊曼代数的标准子空间的包含。他们开发了几种新的研究方法,涉及偏振器,由模块化数据定义的Gelfand三元组,以及模块化算子的扩展。本文详细分析了由直线上共形场论的基本不可约构件所产生的一类特殊实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信