An Invariance Principle for a Random Walk Among Moving Traps via Thermodynamic Formalism

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Siva Athreya, Alexander Drewitz, Rongfeng Sun
{"title":"An Invariance Principle for a Random Walk Among Moving Traps via Thermodynamic Formalism","authors":"Siva Athreya,&nbsp;Alexander Drewitz,&nbsp;Rongfeng Sun","doi":"10.1007/s00220-025-05460-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a random walk among a Poisson cloud of moving traps on <span>\\(\\mathbb {Z}^d\\)</span>, where the walk is killed at a rate proportional to the number of traps occupying the same position. In dimension <span>\\(d=1\\)</span>, we have previously shown that under the annealed law of the random walk conditioned on survival up to time <i>t</i>, the walk is sub-diffusive. Here we show that in <span>\\(d\\geqslant 6\\)</span> and under diffusive scaling, this annealed law satisfies an invariance principle with a positive diffusion constant if the killing rate is small. Our proof is based on the theory of thermodynamic formalism, where we extend some classic results for Markov shifts with a finite alphabet and a potential of summable variation to the case of an uncountable non-compact alphabet.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05460-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05460-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a random walk among a Poisson cloud of moving traps on \(\mathbb {Z}^d\), where the walk is killed at a rate proportional to the number of traps occupying the same position. In dimension \(d=1\), we have previously shown that under the annealed law of the random walk conditioned on survival up to time t, the walk is sub-diffusive. Here we show that in \(d\geqslant 6\) and under diffusive scaling, this annealed law satisfies an invariance principle with a positive diffusion constant if the killing rate is small. Our proof is based on the theory of thermodynamic formalism, where we extend some classic results for Markov shifts with a finite alphabet and a potential of summable variation to the case of an uncountable non-compact alphabet.

基于热力学形式的移动陷阱随机游走的不变性原理
我们考虑在\(\mathbb {Z}^d\)上移动陷阱的泊松云中随机行走,其中行走被杀死的速率与占据相同位置的陷阱数量成正比。在\(d=1\)维度中,我们之前已经表明,在以生存到时间t为条件的随机漫步的退火律下,漫步是次扩散的。本文证明了在\(d\geqslant 6\)和扩散标度下,如果杀死率很小,该退火律满足扩散常数为正的不变性原理。我们的证明是基于热力学形式理论,其中我们推广了一些经典的马尔可夫位移与有限字母和可和变化的潜在情况下的不可数非紧字母的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信