{"title":"Lightweight Hand Gesture Recognition Using FMCW RADAR With Multibranch Temporal Convolutional Networks and Channel Attention","authors":"Taeyoung Kim;Yunho Jung;Seongjoo Lee","doi":"10.1109/JSEN.2025.3603295","DOIUrl":null,"url":null,"abstract":"A novel lightweight hand gesture recognition approach that is based on frequency-modulated continuous-wave (FMCW) radio detection and ranging (RADAR), which aims to minimize computational complexity and memory usage as well as maintain a high recognition performance, is proposed in this article. Most of the existing methods use 2-D or 3-D features that are combined with complex neural network structures, which result in high computational costs. The proposed approach in contrast extracts four components, which include range, Doppler, azimuth, and elevation, as the 1-D time-series features. These features are fed into a neural network that comprises a multibranch temporal convolutional network (TCN), depthwise separable (DS) convolutions, and a channel attention mechanism to enhance the classification performance. The experiments were conducted with nine hand gestures that were collected from nine participants. The proposed system achieved a high accuracy of 99.38% with only 44.6 K parameters and 1.84 M floating point operations per second (FLOPs). Extensive ablation studies and comparative experiments against the existing models demonstrated that the proposed method effectively balances the performance and computational efficiency. This study validates the expressive capability of 1-D features for hand gesture recognition and suggests practical applicability in resource-constrained environments, such as embedded systems.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 19","pages":"37298-37311"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11150559/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel lightweight hand gesture recognition approach that is based on frequency-modulated continuous-wave (FMCW) radio detection and ranging (RADAR), which aims to minimize computational complexity and memory usage as well as maintain a high recognition performance, is proposed in this article. Most of the existing methods use 2-D or 3-D features that are combined with complex neural network structures, which result in high computational costs. The proposed approach in contrast extracts four components, which include range, Doppler, azimuth, and elevation, as the 1-D time-series features. These features are fed into a neural network that comprises a multibranch temporal convolutional network (TCN), depthwise separable (DS) convolutions, and a channel attention mechanism to enhance the classification performance. The experiments were conducted with nine hand gestures that were collected from nine participants. The proposed system achieved a high accuracy of 99.38% with only 44.6 K parameters and 1.84 M floating point operations per second (FLOPs). Extensive ablation studies and comparative experiments against the existing models demonstrated that the proposed method effectively balances the performance and computational efficiency. This study validates the expressive capability of 1-D features for hand gesture recognition and suggests practical applicability in resource-constrained environments, such as embedded systems.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice