Lightweight Hand Gesture Recognition Using FMCW RADAR With Multibranch Temporal Convolutional Networks and Channel Attention

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Taeyoung Kim;Yunho Jung;Seongjoo Lee
{"title":"Lightweight Hand Gesture Recognition Using FMCW RADAR With Multibranch Temporal Convolutional Networks and Channel Attention","authors":"Taeyoung Kim;Yunho Jung;Seongjoo Lee","doi":"10.1109/JSEN.2025.3603295","DOIUrl":null,"url":null,"abstract":"A novel lightweight hand gesture recognition approach that is based on frequency-modulated continuous-wave (FMCW) radio detection and ranging (RADAR), which aims to minimize computational complexity and memory usage as well as maintain a high recognition performance, is proposed in this article. Most of the existing methods use 2-D or 3-D features that are combined with complex neural network structures, which result in high computational costs. The proposed approach in contrast extracts four components, which include range, Doppler, azimuth, and elevation, as the 1-D time-series features. These features are fed into a neural network that comprises a multibranch temporal convolutional network (TCN), depthwise separable (DS) convolutions, and a channel attention mechanism to enhance the classification performance. The experiments were conducted with nine hand gestures that were collected from nine participants. The proposed system achieved a high accuracy of 99.38% with only 44.6 K parameters and 1.84 M floating point operations per second (FLOPs). Extensive ablation studies and comparative experiments against the existing models demonstrated that the proposed method effectively balances the performance and computational efficiency. This study validates the expressive capability of 1-D features for hand gesture recognition and suggests practical applicability in resource-constrained environments, such as embedded systems.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 19","pages":"37298-37311"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11150559/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel lightweight hand gesture recognition approach that is based on frequency-modulated continuous-wave (FMCW) radio detection and ranging (RADAR), which aims to minimize computational complexity and memory usage as well as maintain a high recognition performance, is proposed in this article. Most of the existing methods use 2-D or 3-D features that are combined with complex neural network structures, which result in high computational costs. The proposed approach in contrast extracts four components, which include range, Doppler, azimuth, and elevation, as the 1-D time-series features. These features are fed into a neural network that comprises a multibranch temporal convolutional network (TCN), depthwise separable (DS) convolutions, and a channel attention mechanism to enhance the classification performance. The experiments were conducted with nine hand gestures that were collected from nine participants. The proposed system achieved a high accuracy of 99.38% with only 44.6 K parameters and 1.84 M floating point operations per second (FLOPs). Extensive ablation studies and comparative experiments against the existing models demonstrated that the proposed method effectively balances the performance and computational efficiency. This study validates the expressive capability of 1-D features for hand gesture recognition and suggests practical applicability in resource-constrained environments, such as embedded systems.
基于多分支时间卷积网络和信道关注的FMCW雷达轻量级手势识别
本文提出了一种基于调频连续波(FMCW)无线电探测与测距(RADAR)的新型轻量级手势识别方法,该方法旨在最大限度地降低计算复杂度和内存使用,并保持较高的识别性能。现有的方法大多使用二维或三维特征,并结合复杂的神经网络结构,这导致计算成本高。相比之下,该方法提取了四个分量,包括距离、多普勒、方位角和仰角,作为一维时间序列特征。这些特征被输入到一个由多分支时间卷积网络(TCN)、深度可分卷积(DS)和通道注意机制组成的神经网络中,以提高分类性能。实验用9种手势进行,这些手势是从9名参与者那里收集来的。该系统以44.6 K个参数和1.84 M浮点运算/秒(FLOPs)实现了99.38%的高精度。大量的烧蚀研究和与现有模型的对比实验表明,该方法有效地平衡了性能和计算效率。本研究验证了1-D特征在手势识别中的表达能力,并提出了在资源受限环境(如嵌入式系统)中的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信