{"title":"A stochastic dynamic network model of the space environment","authors":"Yirui Wang, Pietro De Marchi, Massimiliano Vasile","doi":"10.1016/j.asr.2025.08.051","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes to model the space environment as a stochastic dynamic network where each node is a group of objects of a given class, or species, and their relationship is represented by stochastic links. A set of stochastic dynamic equations, governing the evolution of the network, are derived from the network structure and topology. It will be shown that the proposed system of stochastic dynamic equations well reproduces existing results on the evolution of the space environment. The analysis of the structure of the network and relationships among node can help to understand which species of objects and orbit regimes are more critical and affect the most the future evolution of the space environment. In analogy with ecological networks, we develop a theory of the carrying capacity of space based on the stability of equilibria of the network dynamics.</div><div>Some examples are presented starting from the current population of resident objects and different launch traffic forecast models. It will be shown how the proposed network model can be used to study the effect of the adoption of different policies on the execution of collision avoidance and post-mission disposal manoeuvres.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"76 9","pages":"Pages 5168-5198"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117725009408","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes to model the space environment as a stochastic dynamic network where each node is a group of objects of a given class, or species, and their relationship is represented by stochastic links. A set of stochastic dynamic equations, governing the evolution of the network, are derived from the network structure and topology. It will be shown that the proposed system of stochastic dynamic equations well reproduces existing results on the evolution of the space environment. The analysis of the structure of the network and relationships among node can help to understand which species of objects and orbit regimes are more critical and affect the most the future evolution of the space environment. In analogy with ecological networks, we develop a theory of the carrying capacity of space based on the stability of equilibria of the network dynamics.
Some examples are presented starting from the current population of resident objects and different launch traffic forecast models. It will be shown how the proposed network model can be used to study the effect of the adoption of different policies on the execution of collision avoidance and post-mission disposal manoeuvres.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.