Multifunctional Plasmonic WO3-X@CdS Heterojunction Engineering to Achieve Efficient Perovskite Solar Cells

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zheng Lv, Zonghan Guo, Dan Li, Haipeng Jiang, Fengyou Wang, Lin Fan, Maobin Wei, Lili Yang
{"title":"Multifunctional Plasmonic WO3-X@CdS Heterojunction Engineering to Achieve Efficient Perovskite Solar Cells","authors":"Zheng Lv, Zonghan Guo, Dan Li, Haipeng Jiang, Fengyou Wang, Lin Fan, Maobin Wei, Lili Yang","doi":"10.1021/acsami.5c16076","DOIUrl":null,"url":null,"abstract":"To broaden the light-harvesting spectrum of perovskite solar cells (PSCs), WO<sub>3-X</sub> @CdS heterojunctions have been synthesized by in situ growing CdS nanoparticles on WO<sub>3-X</sub> nanorods rich in oxygen vacancies. After introducing them into perovskite layers by the antisolvent method, the localized surface plasmon resonance (LSPR) effect of WO<sub>3-X</sub>@CdS extends photon absorption into the near-infrared region, while both lattice match and its coordination with iodide ions facilitate uniform nucleation and crystallization process to obtain high-quality perovskite films. Moreover, this dual-functional material simultaneously optimizes the hole transport layer/perovskite energy alignment and accelerates the interfacial charge transfer via LSPR-induced near-field enhancement effects. The spectral expansion and improved carrier dynamics synergistically boost the power conversion efficiency to 25.08%, demonstrating heterojunction engineering as a viable strategy for advancing broadband PSCs and other optoelectronic devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"96 5 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c16076","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To broaden the light-harvesting spectrum of perovskite solar cells (PSCs), WO3-X @CdS heterojunctions have been synthesized by in situ growing CdS nanoparticles on WO3-X nanorods rich in oxygen vacancies. After introducing them into perovskite layers by the antisolvent method, the localized surface plasmon resonance (LSPR) effect of WO3-X@CdS extends photon absorption into the near-infrared region, while both lattice match and its coordination with iodide ions facilitate uniform nucleation and crystallization process to obtain high-quality perovskite films. Moreover, this dual-functional material simultaneously optimizes the hole transport layer/perovskite energy alignment and accelerates the interfacial charge transfer via LSPR-induced near-field enhancement effects. The spectral expansion and improved carrier dynamics synergistically boost the power conversion efficiency to 25.08%, demonstrating heterojunction engineering as a viable strategy for advancing broadband PSCs and other optoelectronic devices.

Abstract Image

多功能等离子体WO3-X@CdS实现高效钙钛矿太阳能电池的异质结工程
为了拓宽钙钛矿太阳能电池(PSCs)的光收集光谱,在富含氧空位的WO3-X纳米棒上原位生长CdS纳米粒子,合成了WO3-X @CdS异质结。通过反溶剂方法将它们引入钙钛矿层后,WO3-X@CdS的局域表面等离子体共振(LSPR)效应将光子吸收扩展到近红外区域,而晶格匹配及其与碘离子的配位有利于均匀成核和结晶过程,从而获得高质量的钙钛矿膜。此外,这种双功能材料同时优化了空穴传输层/钙钛矿的能量排列,并通过lspr诱导的近场增强效应加速了界面电荷转移。频谱扩展和改进的载流子动力学协同将功率转换效率提高到25.08%,表明异质结工程是推进宽带psc和其他光电器件的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信