Melis Yarar, Zixuan Chen, Diana Piankova, Matthias Becker, Alexander V. Yakimov, Christophe Copéret, Pierre Florian, Christoph R. Müller, Alexey Fedorov
{"title":"Local Structure and Surface Acidity of Overlayers Prepared by Atomic Layer Deposition of Silica on Alumina","authors":"Melis Yarar, Zixuan Chen, Diana Piankova, Matthias Becker, Alexander V. Yakimov, Christophe Copéret, Pierre Florian, Christoph R. Müller, Alexey Fedorov","doi":"10.1021/acs.chemmater.5c01832","DOIUrl":null,"url":null,"abstract":"Understanding the structure of the silica–alumina interface and the reactivity of such interfacial sites in amorphous aluminosilicate (ASA) materials is essential due to their industrial utilization as solid acid catalysts. Here, we link the structure of silica layers grown on alumina by atomic layer deposition (ALD) to the acidic and catalytic properties of ASA. In particular, we study the local structure of silica overlayers as a function of the number of ALD cycles applied and reveal how the coordination environment of Al and Si sites governs the Lewis and Bro̷nsted acidity and catalytic activity using methanol dehydration as a model structure-sensitive reaction. Relying on advanced solid-state NMR characterization, including <sup>27</sup>Al{<sup>29</sup>Si} dipolar heteronuclear multiple-quantum coherence (D-HMQC) and <sup>29</sup>Si{<sup>27</sup>Al} dipolar-mediated refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) experiments, dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS), and infrared spectroscopy using probe molecules (CO, pyridine), we demonstrate that the atomic-scale mixing of silica and alumina generates strong Bro̷nsted acidity and increases the strength of the Lewis acid sites. Our findings indicate that the density of acid sites is closely related to the coverage of the alumina surface by silica and can be controlled by the number of ALD cycles applied. This study advances our understanding of the relationship between the local environment of Si and Al sites, the abundance and strength of acid sites, and the superior high-temperature selectivity of SiO<sub><i>x</i></sub>-Al<sub>2</sub>O<sub>3</sub>-based catalysts in methanol dehydration when compared to unmodified alumina.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"32 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c01832","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the structure of the silica–alumina interface and the reactivity of such interfacial sites in amorphous aluminosilicate (ASA) materials is essential due to their industrial utilization as solid acid catalysts. Here, we link the structure of silica layers grown on alumina by atomic layer deposition (ALD) to the acidic and catalytic properties of ASA. In particular, we study the local structure of silica overlayers as a function of the number of ALD cycles applied and reveal how the coordination environment of Al and Si sites governs the Lewis and Bro̷nsted acidity and catalytic activity using methanol dehydration as a model structure-sensitive reaction. Relying on advanced solid-state NMR characterization, including 27Al{29Si} dipolar heteronuclear multiple-quantum coherence (D-HMQC) and 29Si{27Al} dipolar-mediated refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) experiments, dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS), and infrared spectroscopy using probe molecules (CO, pyridine), we demonstrate that the atomic-scale mixing of silica and alumina generates strong Bro̷nsted acidity and increases the strength of the Lewis acid sites. Our findings indicate that the density of acid sites is closely related to the coverage of the alumina surface by silica and can be controlled by the number of ALD cycles applied. This study advances our understanding of the relationship between the local environment of Si and Al sites, the abundance and strength of acid sites, and the superior high-temperature selectivity of SiOx-Al2O3-based catalysts in methanol dehydration when compared to unmodified alumina.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.