Phase Transition Engineering for Exciton Dynamics in Atomically Thin Semiconductors

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sihan Lin, , , Zeliang Zhang, , , Wenqi Qian, , , Haiyi Liu, , , Tengteng Gao, , , Changlin Sun, , , Guangyi Tao, , , Fangxun Liu, , , Lie Lin, , , Pengfei Qi*, , , Li-Guo Zhu, , , Zheyu Fang, , and , Weiwei Liu, 
{"title":"Phase Transition Engineering for Exciton Dynamics in Atomically Thin Semiconductors","authors":"Sihan Lin,&nbsp;, ,&nbsp;Zeliang Zhang,&nbsp;, ,&nbsp;Wenqi Qian,&nbsp;, ,&nbsp;Haiyi Liu,&nbsp;, ,&nbsp;Tengteng Gao,&nbsp;, ,&nbsp;Changlin Sun,&nbsp;, ,&nbsp;Guangyi Tao,&nbsp;, ,&nbsp;Fangxun Liu,&nbsp;, ,&nbsp;Lie Lin,&nbsp;, ,&nbsp;Pengfei Qi*,&nbsp;, ,&nbsp;Li-Guo Zhu,&nbsp;, ,&nbsp;Zheyu Fang,&nbsp;, and ,&nbsp;Weiwei Liu,&nbsp;","doi":"10.1021/acsphotonics.5c01269","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional excitonic devices are of great potential to overcome the dilemma of response time and integration in current electronic and/or photonic systems, where dynamically controlling the spatiotemporal dynamics of exciton flux is a cornerstone. Although tip-induced strain engineering and surface acoustic waves (SAWs) have been proposed, the complex accessorial configurations severely limit the applications in integrated devices. Here, we systematically investigate phase transition engineering of vanadium dioxide (VO<sub>2</sub>) for exciton dynamics in an atomically thin semiconductor. Temperature-dependent photoluminescence (PL) spectra demonstrate that PL reaches a maximum at the phase transition temperature <i>T</i><sub>c</sub> (340 K), due to the increase in free carrier density during the insulator-to-metal transition. The thermal hysteresis loop is first observed from PL spectra due to the latent heat in the phase transition. The increased free carrier density during the VO<sub>2</sub> phase transition can dynamically modulate the exciton diffusion coefficient, where the enhanced charged excitons (trions) near the insulator–metal transition temperature promote the exciton diffusion coefficient. The hexagonal boron nitride (hBN) intercalation mitigates the VO<sub>2</sub>-induced negative effects through dielectric screening and interfacial defect reduction while preserving the dynamic phase transition modulation capability in the PL spectra and yielding a more than doubled enhancement of the exciton diffusion coefficient. These findings highlight the importance of phase transition engineering for two-dimensional (2D) exciton-based devices and lay a foundation for the development of functional excitonic devices.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 10","pages":"5537–5547"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.5c01269","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional excitonic devices are of great potential to overcome the dilemma of response time and integration in current electronic and/or photonic systems, where dynamically controlling the spatiotemporal dynamics of exciton flux is a cornerstone. Although tip-induced strain engineering and surface acoustic waves (SAWs) have been proposed, the complex accessorial configurations severely limit the applications in integrated devices. Here, we systematically investigate phase transition engineering of vanadium dioxide (VO2) for exciton dynamics in an atomically thin semiconductor. Temperature-dependent photoluminescence (PL) spectra demonstrate that PL reaches a maximum at the phase transition temperature Tc (340 K), due to the increase in free carrier density during the insulator-to-metal transition. The thermal hysteresis loop is first observed from PL spectra due to the latent heat in the phase transition. The increased free carrier density during the VO2 phase transition can dynamically modulate the exciton diffusion coefficient, where the enhanced charged excitons (trions) near the insulator–metal transition temperature promote the exciton diffusion coefficient. The hexagonal boron nitride (hBN) intercalation mitigates the VO2-induced negative effects through dielectric screening and interfacial defect reduction while preserving the dynamic phase transition modulation capability in the PL spectra and yielding a more than doubled enhancement of the exciton diffusion coefficient. These findings highlight the importance of phase transition engineering for two-dimensional (2D) exciton-based devices and lay a foundation for the development of functional excitonic devices.

Abstract Image

Abstract Image

原子薄半导体激子动力学相变工程
二维激子器件在克服当前电子和/或光子系统中响应时间和集成的困境方面具有很大的潜力,其中动态控制激子通量的时空动力学是一个基石。虽然已经提出了尖端应变工程和表面声波(saw),但复杂的附加结构严重限制了其在集成器件中的应用。在这里,我们系统地研究了二氧化钒(VO2)在原子薄半导体中的激子动力学的相变工程。温度相关的光致发光(PL)光谱表明,由于绝缘体到金属转变过程中自由载流子密度的增加,在相变温度Tc (340 K)处PL达到最大值。由于相变过程中存在潜热,在PL光谱中首次观察到热滞回线。VO2相变过程中自由载流子密度的增加可以动态调节激子扩散系数,其中绝缘体-金属相变温度附近带电激子(trions)的增强促进了激子扩散系数。六方氮化硼(hBN)嵌入通过介电屏蔽和减少界面缺陷减轻了vo2诱导的负面影响,同时保留了PL光谱中的动态相变调制能力,并使激子扩散系数提高了一倍以上。这些发现突出了二维激子器件相变工程的重要性,为开发功能激子器件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信