Deborah Moser,Konrad Lang,Alexandra N Birtasu,Florian Grahammer,Martin Helmstädter,Margot P Scheffer,Tobias Hermle,Achilleas S Frangakis
{"title":"The slit diaphragm in Drosophila exhibits a bilayered, fishnet architecture.","authors":"Deborah Moser,Konrad Lang,Alexandra N Birtasu,Florian Grahammer,Martin Helmstädter,Margot P Scheffer,Tobias Hermle,Achilleas S Frangakis","doi":"10.1038/s41467-025-64347-5","DOIUrl":null,"url":null,"abstract":"The kidney relies on the glomerulus to filter large volumes of blood plasma, with the slit diaphragm (SD) as a key structural component of the glomerular filtration barrier. Despite its central role, the molecular architecture of the SD has remained elusive for decades. Using cryo-electron tomography on focused ion beam-milled Drosophila nephrocytes, an invertebrate podocyte model, we show that the SD exhibits a bilayered fishnet architecture. In the cryo-electron tomography map, we observe criss-crossing strands spanning the extracellular space that can be populated with Sns and Kirre, the Drosophila orthologs of nephrin and Neph1, respectively. We show that sns silencing shortens the SD lines until disappearance, linking the fishnet architecture directly to Sns. After Rab5 silencing, which causes Sns mistrafficking and ectopic formation of the SD, the fishnet pattern also appears ectopically. Elucidating the molecular SD architecture establishes a crucial link between the SD organization and its (patho)physiology.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":"8741"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-64347-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The kidney relies on the glomerulus to filter large volumes of blood plasma, with the slit diaphragm (SD) as a key structural component of the glomerular filtration barrier. Despite its central role, the molecular architecture of the SD has remained elusive for decades. Using cryo-electron tomography on focused ion beam-milled Drosophila nephrocytes, an invertebrate podocyte model, we show that the SD exhibits a bilayered fishnet architecture. In the cryo-electron tomography map, we observe criss-crossing strands spanning the extracellular space that can be populated with Sns and Kirre, the Drosophila orthologs of nephrin and Neph1, respectively. We show that sns silencing shortens the SD lines until disappearance, linking the fishnet architecture directly to Sns. After Rab5 silencing, which causes Sns mistrafficking and ectopic formation of the SD, the fishnet pattern also appears ectopically. Elucidating the molecular SD architecture establishes a crucial link between the SD organization and its (patho)physiology.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.