{"title":"Resolving chemical-motif similarity with enhanced atomic structure representations for accurately predicting descriptors at metallic interfaces.","authors":"Cheng Cai,Tao Wang","doi":"10.1038/s41467-025-63860-x","DOIUrl":null,"url":null,"abstract":"Accurately predicting catalytic descriptors with machine learning (ML) methods is significant to achieving accelerated catalyst design, where a unique representation of the atomic structure of each system is the key to developing a universal, efficient, and accurate ML model that is capable of tackling diverse degrees of complexity in heterogeneous catalysis scenarios. Herein, we integrate equivariant message-passing-enhanced atomic structure representation to resolve chemical-motif similarity in highly complex catalytic systems. Our developed equivariant graph neural network (equivGNN) model achieves mean absolute errors <0.09 eV for different descriptors at metallic interfaces, including complex adsorbates with more diverse adsorption motifs on ordered catalyst surfaces, adsorption motifs on highly disordered surfaces of high-entropy alloys, and the complex structures of supported nanoparticles. The prediction accuracy and easy implementation attained by our model across various systems demonstrate its robustness and potentially broad applicability, laying a reasonable basis for achieving accelerated catalyst design.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"124 1","pages":"8761"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63860-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting catalytic descriptors with machine learning (ML) methods is significant to achieving accelerated catalyst design, where a unique representation of the atomic structure of each system is the key to developing a universal, efficient, and accurate ML model that is capable of tackling diverse degrees of complexity in heterogeneous catalysis scenarios. Herein, we integrate equivariant message-passing-enhanced atomic structure representation to resolve chemical-motif similarity in highly complex catalytic systems. Our developed equivariant graph neural network (equivGNN) model achieves mean absolute errors <0.09 eV for different descriptors at metallic interfaces, including complex adsorbates with more diverse adsorption motifs on ordered catalyst surfaces, adsorption motifs on highly disordered surfaces of high-entropy alloys, and the complex structures of supported nanoparticles. The prediction accuracy and easy implementation attained by our model across various systems demonstrate its robustness and potentially broad applicability, laying a reasonable basis for achieving accelerated catalyst design.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.