Processive ring-opening metathesis polymerization of low ring strain cycloalkenes via molecularly confined catalyst.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zefeng Zhou,Yang Wang,Wei-Shang Lo,Gavin J Giardino,Kanika Lalit,Michael Goldstein,Wenqi Wang,Chloe Fields,Alfred Barney,Chia-Kuang Tsung,Udayan Mohanty,Wenyu Huang,Jia Niu
{"title":"Processive ring-opening metathesis polymerization of low ring strain cycloalkenes via molecularly confined catalyst.","authors":"Zefeng Zhou,Yang Wang,Wei-Shang Lo,Gavin J Giardino,Kanika Lalit,Michael Goldstein,Wenqi Wang,Chloe Fields,Alfred Barney,Chia-Kuang Tsung,Udayan Mohanty,Wenyu Huang,Jia Niu","doi":"10.1038/s41467-025-62412-7","DOIUrl":null,"url":null,"abstract":"Controlling the reactivity of the propagating chain end in polymerization reactions is crucial for achieving well-defined polymers in both synthetic polymer chemistry and biology. Processive enzymes in nature have evolved substrate-enclosing structures, safeguarding the catalytic center against reentry by the nascent polymer. Here, we present a strategy for processive catalytic polymerization by encapsulating catalysts for ring-opening metathesis polymerization (ROMP) into the sub-surface cages of a metal-organic framework. The sub-surface encapsulation of the catalysts within the framework allowed the nascent polymer to grow out of the framework with minimal impedance and achieve continuous chain growth, while protecting the propagating polymer chain end from the secondary metathesis reaction with the alkenes in the backbone of the nascent polymer. As a result, ultra-high-molecular-weight polymers with low dispersity were generated from the ROMP of low ring strain cycloalkenes such as cis-cyclooctene and cyclopentene. We demonstrate that ultra-high-molecular-weight polymers with degradable backbones and enhanced mechanical and adhesive properties could be readily generated from this approach.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":"8738"},"PeriodicalIF":15.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62412-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the reactivity of the propagating chain end in polymerization reactions is crucial for achieving well-defined polymers in both synthetic polymer chemistry and biology. Processive enzymes in nature have evolved substrate-enclosing structures, safeguarding the catalytic center against reentry by the nascent polymer. Here, we present a strategy for processive catalytic polymerization by encapsulating catalysts for ring-opening metathesis polymerization (ROMP) into the sub-surface cages of a metal-organic framework. The sub-surface encapsulation of the catalysts within the framework allowed the nascent polymer to grow out of the framework with minimal impedance and achieve continuous chain growth, while protecting the propagating polymer chain end from the secondary metathesis reaction with the alkenes in the backbone of the nascent polymer. As a result, ultra-high-molecular-weight polymers with low dispersity were generated from the ROMP of low ring strain cycloalkenes such as cis-cyclooctene and cyclopentene. We demonstrate that ultra-high-molecular-weight polymers with degradable backbones and enhanced mechanical and adhesive properties could be readily generated from this approach.
低环应变环烯烃分子受限催化剂的开环复分解过程聚合。
在合成高分子化学和生物学中,控制聚合反应中传播链末端的反应性对于获得定义良好的聚合物至关重要。自然界中的过程酶进化出了底物包裹结构,保护催化中心不被新生聚合物重新进入。在这里,我们提出了一种通过将开环复分解聚合(ROMP)催化剂封装到金属有机框架的亚表面笼中的过程催化聚合策略。催化剂在框架内的亚表面封装使得初生聚合物可以以最小的阻抗从框架中生长出来,实现连续的链生长,同时保护了传播的聚合物链端不与初生聚合物主链中的烯烃发生二次复分解反应。因此,顺式环烯和环戊烯等低环应变环烯烃的ROMP生成了低分散性的超高分子量聚合物。我们证明了这种方法可以很容易地产生具有可降解骨架和增强机械和粘合性能的超高分子量聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信