Transparent Au Nanopatterned Catalysts: A Strategy for Improved Light Absorption in Photoelectrochemical CO2-to-Syngas Conversion

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-01 DOI:10.1021/acsnano.5c08137
Yesol Kim, , , Minki Kim, , , Gukbo Kim, , , Jaedong Jang, , , Geun-Tae Yun, , , Jun Tae Song, , , Aqil Jamal, , , Issam Gereige, , , Woo-Bin Jung*, , and , Hee-Tae Jung*, 
{"title":"Transparent Au Nanopatterned Catalysts: A Strategy for Improved Light Absorption in Photoelectrochemical CO2-to-Syngas Conversion","authors":"Yesol Kim,&nbsp;, ,&nbsp;Minki Kim,&nbsp;, ,&nbsp;Gukbo Kim,&nbsp;, ,&nbsp;Jaedong Jang,&nbsp;, ,&nbsp;Geun-Tae Yun,&nbsp;, ,&nbsp;Jun Tae Song,&nbsp;, ,&nbsp;Aqil Jamal,&nbsp;, ,&nbsp;Issam Gereige,&nbsp;, ,&nbsp;Woo-Bin Jung*,&nbsp;, and ,&nbsp;Hee-Tae Jung*,&nbsp;","doi":"10.1021/acsnano.5c08137","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrochemical (PEC) catalysis is a promising approach for converting solar energy into chemical fuels, but a fundamental challenge lies in balancing catalytic activity with efficient light absorption. Catalyst surface coverage on light-harvesting supports often leads to a trade-off that limits overall performance. To address this issue, we developed a high-aspect-ratio (&gt;20) gold (Au) nanopatterned catalyst designed to maximize both light harvesting and catalytic efficiency. Compared to conventional film-type catalysts, the nanopatterned catalyst exhibits a 3.6-fold increase in electrochemical surface area and a 2.5-fold improvement in transparency, enabling greater light transmission to the photoabsorber. In the reduction of CO<sub>2</sub> to syngas (H<sub>2</sub>:CO = 1:1), the nanopatterned catalyst achieves a 240 mV lower onset potential and a 6.2-fold increase in syngas formation rates compared to its film counterpart. These enhancements are attributed to the unique structure of the nanopatterns, which feature smaller grain sizes, higher surface area, and improved light transmittance. This versatile nanopatterning approach is not limited to Au but can be extended to other catalytic materials, including metals, metal oxides, and transition metal dichalcogenides. The design offers a scalable solution to improve PEC performance for a wide range of applications, from CO<sub>2</sub> reduction to other catalytic processes. By overcoming the trade-offs associated with traditional catalysts, this study provides a pathway toward more efficient and sustainable PEC systems.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 40","pages":"35459–35467"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08137","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) catalysis is a promising approach for converting solar energy into chemical fuels, but a fundamental challenge lies in balancing catalytic activity with efficient light absorption. Catalyst surface coverage on light-harvesting supports often leads to a trade-off that limits overall performance. To address this issue, we developed a high-aspect-ratio (>20) gold (Au) nanopatterned catalyst designed to maximize both light harvesting and catalytic efficiency. Compared to conventional film-type catalysts, the nanopatterned catalyst exhibits a 3.6-fold increase in electrochemical surface area and a 2.5-fold improvement in transparency, enabling greater light transmission to the photoabsorber. In the reduction of CO2 to syngas (H2:CO = 1:1), the nanopatterned catalyst achieves a 240 mV lower onset potential and a 6.2-fold increase in syngas formation rates compared to its film counterpart. These enhancements are attributed to the unique structure of the nanopatterns, which feature smaller grain sizes, higher surface area, and improved light transmittance. This versatile nanopatterning approach is not limited to Au but can be extended to other catalytic materials, including metals, metal oxides, and transition metal dichalcogenides. The design offers a scalable solution to improve PEC performance for a wide range of applications, from CO2 reduction to other catalytic processes. By overcoming the trade-offs associated with traditional catalysts, this study provides a pathway toward more efficient and sustainable PEC systems.

Abstract Image

透明金纳米型催化剂:一种改善光电化学co2 -合成气转化光吸收的策略。
光电化学催化是将太阳能转化为化学燃料的一种很有前途的方法,但一个根本的挑战在于如何平衡催化活性和有效的光吸收。光收集支架上的催化剂表面覆盖通常会导致限制整体性能的权衡。为了解决这个问题,我们开发了一种高宽高比(bbb20)金(Au)纳米型催化剂,旨在最大限度地提高光收集和催化效率。与传统的薄膜型催化剂相比,纳米型催化剂的电化学表面积增加了3.6倍,透明度提高了2.5倍,使光透射到光吸收剂。在将CO2还原为合成气(H2:CO = 1:1)的过程中,纳米催化剂的起始电位降低了240 mV,合成气形成速率比薄膜催化剂提高了6.2倍。这些增强归功于纳米图案的独特结构,它具有更小的晶粒尺寸,更高的表面积和更好的透光率。这种多用途的纳米图像化方法不仅限于金,而且可以扩展到其他催化材料,包括金属,金属氧化物和过渡金属二硫族化合物。该设计提供了一个可扩展的解决方案,以提高广泛应用的PEC性能,从二氧化碳还原到其他催化过程。通过克服与传统催化剂相关的权衡,本研究为更高效和可持续的PEC系统提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信