Gourav Bhattacharya, Indrianita Lionadi, stuart McMichael, Mike Taverne, James McLaughlin, Pilar Fernandez-Ibanez, Chung-Che Huang, Ying-Lung Daniel Ho, Amir Farokh Payam
{"title":"Two Dimensional-Material-Coated Microcantilevers for Enhanced Mass Sensing and Material Characterization","authors":"Gourav Bhattacharya, Indrianita Lionadi, stuart McMichael, Mike Taverne, James McLaughlin, Pilar Fernandez-Ibanez, Chung-Che Huang, Ying-Lung Daniel Ho, Amir Farokh Payam","doi":"10.1039/d5nr03147h","DOIUrl":null,"url":null,"abstract":"The integration of 2D material coatings on microcantilevers marks a transformative advancement in nanomechanical sensing. As essential components of nanomechanical sensors, microcantilevers detect minute forces, such as molecular interactions, through frequency shift measurements, enabling ultra-sensitive detection with atomic-scale mass resolution. This work emphasizes the novelty of employing 2D-material coatings on microcantilevers, presenting an integrated approach that combines theoretical modeling, simulation, and experimentation. By utilizing 2D-material-coated microcantilevers, this study demonstrates the precise measurement of mass, Young’s modulus and thickness of 2D material layers. The enhanced performance of these coated resonators is showcased in applications such as bacterial and uric acid mass sensing at varying concentrations, achieving superior frequency detection, responsivity, and accuracy. This research not only advances nanoscale sensor design but also underscores the potential of 2D-material coatings in revolutionizing nanoelectromechanical sensors for materials characterization and mass spectrometry, paving the way for next-generation sensing technologies.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"114 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr03147h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of 2D material coatings on microcantilevers marks a transformative advancement in nanomechanical sensing. As essential components of nanomechanical sensors, microcantilevers detect minute forces, such as molecular interactions, through frequency shift measurements, enabling ultra-sensitive detection with atomic-scale mass resolution. This work emphasizes the novelty of employing 2D-material coatings on microcantilevers, presenting an integrated approach that combines theoretical modeling, simulation, and experimentation. By utilizing 2D-material-coated microcantilevers, this study demonstrates the precise measurement of mass, Young’s modulus and thickness of 2D material layers. The enhanced performance of these coated resonators is showcased in applications such as bacterial and uric acid mass sensing at varying concentrations, achieving superior frequency detection, responsivity, and accuracy. This research not only advances nanoscale sensor design but also underscores the potential of 2D-material coatings in revolutionizing nanoelectromechanical sensors for materials characterization and mass spectrometry, paving the way for next-generation sensing technologies.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.