Colloidally synthesized and bandgap-engineered luminescent titanium nitride quantum dots

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-10-02 DOI:10.1039/d5nr03290c
Aswathi Maladan, Takuya Okamoto, Mohit Kumar, Most Farida Khatun, Yasutaka Matsuo, Ch Subrahamayam, Vasudevanpillai Biju
{"title":"Colloidally synthesized and bandgap-engineered luminescent titanium nitride quantum dots","authors":"Aswathi Maladan, Takuya Okamoto, Mohit Kumar, Most Farida Khatun, Yasutaka Matsuo, Ch Subrahamayam, Vasudevanpillai Biju","doi":"10.1039/d5nr03290c","DOIUrl":null,"url":null,"abstract":"Semiconductor nanomaterials, such as cadmium, lead, and mercury chalcogenides, as well as lead halide perovskites, exhibit excellent optical, electronic, photonic, and photovoltaic properties, making them promising for applications in solar cells, LEDs, and X-ray photodetectors. However, heavy metals, such as Cd, Hg, and Pb, raise concerns about the use of these nanomaterials in devices and the recycling and disposal of such devices. Therefore, developing greener luminescent materials is crucial for sustainable optoelectronic and photovoltaic technologies. We report a colloidal chemical method for engineering brilliantly luminescent titanium nitride (TiN) quantum dots showing tunable optical bandgap (1.8~2.2 eV) and multicolor photoluminescence. We demonstrate the TiN quantum dot structure and properties using HRTEM, SEM-EDX, XRD, XPS, Raman spectroscopy, and steady-state and time-resolved fluorescence spectroscopy, confirming their size, morphology, chemical composition, crystalline structure, bandgap, and luminescence properties. This research presents luminescent TiN quantum dots as promising substitutes for metal chalcogenides and lead halide perovskites in sustainable electrooptical and photovoltaic technologies.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"73 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr03290c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconductor nanomaterials, such as cadmium, lead, and mercury chalcogenides, as well as lead halide perovskites, exhibit excellent optical, electronic, photonic, and photovoltaic properties, making them promising for applications in solar cells, LEDs, and X-ray photodetectors. However, heavy metals, such as Cd, Hg, and Pb, raise concerns about the use of these nanomaterials in devices and the recycling and disposal of such devices. Therefore, developing greener luminescent materials is crucial for sustainable optoelectronic and photovoltaic technologies. We report a colloidal chemical method for engineering brilliantly luminescent titanium nitride (TiN) quantum dots showing tunable optical bandgap (1.8~2.2 eV) and multicolor photoluminescence. We demonstrate the TiN quantum dot structure and properties using HRTEM, SEM-EDX, XRD, XPS, Raman spectroscopy, and steady-state and time-resolved fluorescence spectroscopy, confirming their size, morphology, chemical composition, crystalline structure, bandgap, and luminescence properties. This research presents luminescent TiN quantum dots as promising substitutes for metal chalcogenides and lead halide perovskites in sustainable electrooptical and photovoltaic technologies.
胶体合成和带隙工程的发光氮化钛量子点
半导体纳米材料,如镉、铅和汞硫族化合物,以及卤化铅钙钛矿,表现出优异的光学、电子、光子和光伏特性,使它们在太阳能电池、led和x射线光电探测器中应用前景广阔。然而,重金属,如Cd、Hg和Pb,引起了人们对这些纳米材料在器件中的使用以及这些器件的回收和处置的关注。因此,开发绿色发光材料对于可持续光电和光伏技术至关重要。本文报道了一种胶体化学方法,用于工程制备具有可调谐光学带隙(1.8~2.2 eV)和多色光致发光的亮发光氮化钛(TiN)量子点。我们利用HRTEM, SEM-EDX, XRD, XPS,拉曼光谱,稳态和时间分辨荧光光谱等方法对TiN量子点的结构和性能进行了验证,确定了它们的尺寸,形态,化学成分,晶体结构,带隙和发光性能。该研究提出了发光TiN量子点作为金属硫族化合物和卤化铅钙钛矿在可持续光电和光伏技术中的有前途的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信