Junwon Kang,Hamin Kim,Haewook Jang,Hyelyn Joo,Soobin Lee,Gi Yoon Lee,Hyoung Jin Kang,Youngmin Kim,Tae Hyun Kim,Sunghoon Kwon,Eun Ju Lee
{"title":"One-day rapid sterility test for human-derived biopharmaceuticals.","authors":"Junwon Kang,Hamin Kim,Haewook Jang,Hyelyn Joo,Soobin Lee,Gi Yoon Lee,Hyoung Jin Kang,Youngmin Kim,Tae Hyun Kim,Sunghoon Kwon,Eun Ju Lee","doi":"10.1038/s41551-025-01524-3","DOIUrl":null,"url":null,"abstract":"Biopharmaceuticals are emerging as viable alternatives to chemically synthesized drugs for potential treatment to various diseases. However, many of these human-derived components cannot withstand terminal sterilization procedures, and the duration of conventional sterility testing methods often exceeds their limited shelf life. Consequently, biopharmaceuticals are now frequently administered to patients before sterility confirmation. Here we present a nanoparticle-based enrichment and rapid sterility test that can determine product sterility within a single day, mitigating clinical risks of biopharmaceuticals and maintaining therapeutic efficacies during delivery. The assay incorporates synthetic beta-2-glycoprotein I peptides for selective isolation and purification of a broad spectrum of microorganisms and a microfluidic chip designed to automatically monitor their metabolic activities via fluorescence imaging, which are inferred from the reduction of a non-toxic dye as they grow. Compared with conventional approaches, the turnaround time was substantially reduced by >58 h with 100% accuracy and a limit of detection down to a concentration of 1 colony forming unit per millilitre. We validate our approach using various forms of clinical-grade biopharmaceutical products.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"286 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01524-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biopharmaceuticals are emerging as viable alternatives to chemically synthesized drugs for potential treatment to various diseases. However, many of these human-derived components cannot withstand terminal sterilization procedures, and the duration of conventional sterility testing methods often exceeds their limited shelf life. Consequently, biopharmaceuticals are now frequently administered to patients before sterility confirmation. Here we present a nanoparticle-based enrichment and rapid sterility test that can determine product sterility within a single day, mitigating clinical risks of biopharmaceuticals and maintaining therapeutic efficacies during delivery. The assay incorporates synthetic beta-2-glycoprotein I peptides for selective isolation and purification of a broad spectrum of microorganisms and a microfluidic chip designed to automatically monitor their metabolic activities via fluorescence imaging, which are inferred from the reduction of a non-toxic dye as they grow. Compared with conventional approaches, the turnaround time was substantially reduced by >58 h with 100% accuracy and a limit of detection down to a concentration of 1 colony forming unit per millilitre. We validate our approach using various forms of clinical-grade biopharmaceutical products.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.