Emilie Vuille-dit-Bille, Marc-Alexandre Dubois, Junsun Hwang, Dara Bayat, Thomas Overstolz, Amit Dolev, Sarah Heub, Gilles Weder, Michel Despont, Mahmut Selman Sakar
{"title":"On-chip particle levitation and micromanipulation using bulk acoustic waves","authors":"Emilie Vuille-dit-Bille, Marc-Alexandre Dubois, Junsun Hwang, Dara Bayat, Thomas Overstolz, Amit Dolev, Sarah Heub, Gilles Weder, Michel Despont, Mahmut Selman Sakar","doi":"10.1039/d5lc00747j","DOIUrl":null,"url":null,"abstract":"Acoustofluidic technologies enable precise manipulation of microscale objects using travelling and standing sound waves in physiological fluids, offering exciting capabilities for biomedical and chemical applications. In particular, surface acoustic wave-based devices have shown great promise for on-chip micromanipulation, but their planar transducer configuration limits the usable workspace near the microchannel surface. Here, we present a novel acoustofluidic platform based on a digitally addressable array of piezoelectric micromachined ultrasound transducers (PMUTs) that generate bulk acoustic waves and acoustic traps within three-dimensional (3D) fluidic chambers. Through a combination of finite element modelling and experimental measurements, we quantify the acoustic field distribution and study acoustic trap formation dynamics. We demonstrate deterministic 3D levitation of particles in water at rest and under continuous flow by generating standing acoustic waves across the height of the chamber. Our results show that 30 µm polystyrene particles can be levitated to a pressure node generated 640 µm above the surface with less than 6% positional error. The system applies in-plane acoustic radiation forces as high as 90 pN to keep the particles in the trap under flow rates up to 40 µL/min. We leverage spatiotemporal modulation of the acoustic field for continuous planar transport of microparticle aggregates. PMUT arrays are microfabricated using conventional cleanroom techniques, thus can be readily integrated with compact fluidic systems. Our work lays the foundation for the development of reconfigurable and scalable acoustofluidic micromanipulation systems, with broad potential for lab-on-chip technologies.","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":"101 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00747j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustofluidic technologies enable precise manipulation of microscale objects using travelling and standing sound waves in physiological fluids, offering exciting capabilities for biomedical and chemical applications. In particular, surface acoustic wave-based devices have shown great promise for on-chip micromanipulation, but their planar transducer configuration limits the usable workspace near the microchannel surface. Here, we present a novel acoustofluidic platform based on a digitally addressable array of piezoelectric micromachined ultrasound transducers (PMUTs) that generate bulk acoustic waves and acoustic traps within three-dimensional (3D) fluidic chambers. Through a combination of finite element modelling and experimental measurements, we quantify the acoustic field distribution and study acoustic trap formation dynamics. We demonstrate deterministic 3D levitation of particles in water at rest and under continuous flow by generating standing acoustic waves across the height of the chamber. Our results show that 30 µm polystyrene particles can be levitated to a pressure node generated 640 µm above the surface with less than 6% positional error. The system applies in-plane acoustic radiation forces as high as 90 pN to keep the particles in the trap under flow rates up to 40 µL/min. We leverage spatiotemporal modulation of the acoustic field for continuous planar transport of microparticle aggregates. PMUT arrays are microfabricated using conventional cleanroom techniques, thus can be readily integrated with compact fluidic systems. Our work lays the foundation for the development of reconfigurable and scalable acoustofluidic micromanipulation systems, with broad potential for lab-on-chip technologies.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.