Parameterized Modeling of Unfrozen Water in Frozen Soil Based on the Freezing Characteristics of Multicomponent Cation Solutions and the Electrical Double‐Layer Theory of Clay Colloids
{"title":"Parameterized Modeling of Unfrozen Water in Frozen Soil Based on the Freezing Characteristics of Multicomponent Cation Solutions and the Electrical Double‐Layer Theory of Clay Colloids","authors":"Xiaoqing Gao, Ruiqiang Bai, Xiao Jin, Ye Yu, Zhenchao Li, Siqiong Luo, Wen Yang, JingYi Zhao","doi":"10.1029/2025wr040886","DOIUrl":null,"url":null,"abstract":"Soil freezing characteristics are predominantly governed by the mechanism of bound water, which essentially constitutes a multicomponent cations distribution within the electrical double‐layer (EDL) on clay particles. The freezing behavior of bound water is determined by two critical factors: (a) the distribution characteristics of cation solutions; (b) the quantitative relationship between cation concentration and freezing point. Although EDL‐based unfrozen water model has been proposed, the freezing characteristics of multicomponent cation solutions remain poorly understood. Our findings indicate that: (a) The synergistic effect of multicomponent cations increases the freezing point depression coefficient of bound water (i.e., the degree of freezing point lowering per unit concentration) by several‐fold compared to NaCl solution; (b) For typical mineral soils with low Na<jats:sup>+</jats:sup> content (<15%), a linear freezing point depression equation can accurately characterize the freezing process of multicomponent cation solutions; (c) typical mineral soils exhibit highly similar cation distribution characteristics. By integrating the freezing point depression equation with EDL theory, this study not only improves the EDL‐based unfrozen water model but also develops a parameterized model applicable to typical mineral soils, and elucidating the intrinsic mechanisms of the model's robustness. Validation using measured data from 12 typical soil types demonstrates that this parameterized model can accurately predict unfrozen water content in sands, silts, and clays with low to moderate clay content within the temperature range of −0.263°C to −20°C. The study establishes a theoretical framework distinct from conventional water potential theory, thereby deepening the understanding of freezing characteristics in frozen soils.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2025wr040886","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil freezing characteristics are predominantly governed by the mechanism of bound water, which essentially constitutes a multicomponent cations distribution within the electrical double‐layer (EDL) on clay particles. The freezing behavior of bound water is determined by two critical factors: (a) the distribution characteristics of cation solutions; (b) the quantitative relationship between cation concentration and freezing point. Although EDL‐based unfrozen water model has been proposed, the freezing characteristics of multicomponent cation solutions remain poorly understood. Our findings indicate that: (a) The synergistic effect of multicomponent cations increases the freezing point depression coefficient of bound water (i.e., the degree of freezing point lowering per unit concentration) by several‐fold compared to NaCl solution; (b) For typical mineral soils with low Na+ content (<15%), a linear freezing point depression equation can accurately characterize the freezing process of multicomponent cation solutions; (c) typical mineral soils exhibit highly similar cation distribution characteristics. By integrating the freezing point depression equation with EDL theory, this study not only improves the EDL‐based unfrozen water model but also develops a parameterized model applicable to typical mineral soils, and elucidating the intrinsic mechanisms of the model's robustness. Validation using measured data from 12 typical soil types demonstrates that this parameterized model can accurately predict unfrozen water content in sands, silts, and clays with low to moderate clay content within the temperature range of −0.263°C to −20°C. The study establishes a theoretical framework distinct from conventional water potential theory, thereby deepening the understanding of freezing characteristics in frozen soils.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.