Tailoring Charge Trap Characteristics of Cobalt and Silicon Hybrid Nanostructure: Phases and Interface Effect of Thermal Treatment

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hanyeol Ahn, Minseon Gu, Beom Soo Joo, Young Jun Chang, Moonsup Han
{"title":"Tailoring Charge Trap Characteristics of Cobalt and Silicon Hybrid Nanostructure: Phases and Interface Effect of Thermal Treatment","authors":"Hanyeol Ahn, Minseon Gu, Beom Soo Joo, Young Jun Chang, Moonsup Han","doi":"10.1016/j.jallcom.2025.184159","DOIUrl":null,"url":null,"abstract":"We systematically investigated the effect of post-deposition annealing temperature on the memory characteristics of a metal–oxide–insulator–oxide–semiconductor (MOIOS) structure utilizing cobalt–silicon hybrid nanostructures (CSHN) as the charge trapping layer (CTL). The MOIOS configurations were fabricated under identical conditions and thermally treated at five different temperatures from 530 to 880 °C. Capacitance–voltage (C–V) measurements revealed that only the structure annealed at 730 °C exhibited anti-clockwise hysteresis, a wide memory window width, and a flat-band voltage closest to 0<!-- --> <!-- -->V, indicating ideal hole-only charge trapping behavior via the substrate. To elucidate the underlying mechanism, X-ray photoelectron spectroscopy (XPS) was employed to analyze the chemical states of cobalt and silicon atoms in the CTL. The results demonstrated that the optimal memory performance at 730 °C correlates with the formation of metallic cobalt nanostructures and the suppression of interfacial silicide bonding. Further analysis revealed that trap polarity is governed by the dominant cobalt oxide phase (CoO promotes hole trapping while Co<sub>3</sub>O<sub>4</sub> favors electron trapping) and that interfacial bonding states influence the charge injection path. These findings provide a mechanistic interpretation linking thermal processing, chemical phase evolution, and charge transport behavior, thereby establishing a process–structure–property relationship critical for high-performance charge trap memory using CSHN-based materials.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"214 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.184159","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We systematically investigated the effect of post-deposition annealing temperature on the memory characteristics of a metal–oxide–insulator–oxide–semiconductor (MOIOS) structure utilizing cobalt–silicon hybrid nanostructures (CSHN) as the charge trapping layer (CTL). The MOIOS configurations were fabricated under identical conditions and thermally treated at five different temperatures from 530 to 880 °C. Capacitance–voltage (C–V) measurements revealed that only the structure annealed at 730 °C exhibited anti-clockwise hysteresis, a wide memory window width, and a flat-band voltage closest to 0 V, indicating ideal hole-only charge trapping behavior via the substrate. To elucidate the underlying mechanism, X-ray photoelectron spectroscopy (XPS) was employed to analyze the chemical states of cobalt and silicon atoms in the CTL. The results demonstrated that the optimal memory performance at 730 °C correlates with the formation of metallic cobalt nanostructures and the suppression of interfacial silicide bonding. Further analysis revealed that trap polarity is governed by the dominant cobalt oxide phase (CoO promotes hole trapping while Co3O4 favors electron trapping) and that interfacial bonding states influence the charge injection path. These findings provide a mechanistic interpretation linking thermal processing, chemical phase evolution, and charge transport behavior, thereby establishing a process–structure–property relationship critical for high-performance charge trap memory using CSHN-based materials.
钴硅杂化纳米结构的剪裁电荷阱特性:热处理的相和界面效应
本文系统地研究了沉积后退火温度对金属-氧化物-绝缘体-氧化物-半导体(MOIOS)结构记忆特性的影响,该结构采用钴硅杂化纳米结构(CSHN)作为电荷捕获层(CTL)。在相同的条件下制备MOIOS结构,并在530至880 °C的五种不同温度下进行热处理。电容电压(C - V)测量表明,只有在730 °C退火的结构才表现出逆时针滞后,宽的记忆窗口宽度和接近0 V的平带电压,表明理想的通过衬底的仅空穴电荷捕获行为。利用x射线光电子能谱(XPS)对CTL中钴原子和硅原子的化学状态进行了分析。结果表明,在730 °C时的最佳记忆性能与金属钴纳米结构的形成和界面硅化物键合的抑制有关。进一步分析表明,陷阱极性受主导的钴氧化物相控制(CoO促进空穴捕获,而Co3O4有利于电子捕获),界面键合状态影响电荷注入路径。这些发现为热加工、化学相演化和电荷传输行为之间的联系提供了机制解释,从而建立了一种对使用cshn基材料的高性能电荷陷阱存储器至关重要的工艺-结构-性能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信