Carbon dot-embedded hybrid microgels: A new frontier in functional soft materials

IF 19.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Neha Garg , Armaandeep Kaur , Savita Chaudhary , Abhijit Dan
{"title":"Carbon dot-embedded hybrid microgels: A new frontier in functional soft materials","authors":"Neha Garg ,&nbsp;Armaandeep Kaur ,&nbsp;Savita Chaudhary ,&nbsp;Abhijit Dan","doi":"10.1016/j.cis.2025.103680","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dot (CD)-incorporated hybrid microgels are emerging as advanced materials in the field of nanotechnology owing to their excellent potential in biomedical, environmental remediation, sensing and bioimaging applications. This review explores the integration of CDs within the polymeric microgel matrices, highlighting how CDs impart exceptional optical and biocompatible properties to create highly versatile, responsive and multifunctional hybrid microgels. A wide range of chemical and natural precursors can be utilized for the synthesis of CDs, complemented by diverse methodologies for fabricating hybrid microgels, including both innovative and traditional synthesis techniques. Detailed discussions on various characterization methods, ranging from spectroscopic and microscopic analyses to dynamic light scattering and zeta potential measurements, provide a comprehensive framework for understanding the structure, functionality, and performance of these materials. Key applications, such as precision drug delivery, real-time bioimaging, and environmental remediation are explored, underscoring the potential of these smart materials in driving resilient, sustainable technological innovations. By providing a thorough overview of current advancements and challenges, this review is intended to provide insights to researchers to inspire further research and propel the development of next-generation hybrid systems for practical, real-world applications.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"346 ","pages":"Article 103680"},"PeriodicalIF":19.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000186862500291X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dot (CD)-incorporated hybrid microgels are emerging as advanced materials in the field of nanotechnology owing to their excellent potential in biomedical, environmental remediation, sensing and bioimaging applications. This review explores the integration of CDs within the polymeric microgel matrices, highlighting how CDs impart exceptional optical and biocompatible properties to create highly versatile, responsive and multifunctional hybrid microgels. A wide range of chemical and natural precursors can be utilized for the synthesis of CDs, complemented by diverse methodologies for fabricating hybrid microgels, including both innovative and traditional synthesis techniques. Detailed discussions on various characterization methods, ranging from spectroscopic and microscopic analyses to dynamic light scattering and zeta potential measurements, provide a comprehensive framework for understanding the structure, functionality, and performance of these materials. Key applications, such as precision drug delivery, real-time bioimaging, and environmental remediation are explored, underscoring the potential of these smart materials in driving resilient, sustainable technological innovations. By providing a thorough overview of current advancements and challenges, this review is intended to provide insights to researchers to inspire further research and propel the development of next-generation hybrid systems for practical, real-world applications.

Abstract Image

碳点嵌入杂化微凝胶:功能软材料的新前沿。
碳点混合微凝胶由于在生物医学、环境修复、传感和生物成像等领域具有优异的应用潜力,正在成为纳米技术领域的先进材料。这篇综述探讨了CDs在聚合物微凝胶基质中的整合,强调了CDs如何赋予卓越的光学和生物相容性,以创造高度通用、反应灵敏和多功能的杂交微凝胶。广泛的化学和天然前体可用于合成CDs,并辅以各种制造混合微凝胶的方法,包括创新和传统合成技术。详细讨论了各种表征方法,从光谱和微观分析到动态光散射和zeta电位测量,为理解这些材料的结构、功能和性能提供了一个全面的框架。关键应用,如精确药物输送,实时生物成像和环境修复进行了探索,强调了这些智能材料在推动弹性,可持续技术创新方面的潜力。通过对当前进展和挑战的全面概述,本综述旨在为研究人员提供见解,以启发进一步研究并推动下一代混合动力系统的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信