Automated Grading for Efficiently Evaluating the Dual-Use Biological Capabilities of Large Language Models.

Rand health quarterly Pub Date : 2025-09-29 eCollection Date: 2025-09-01
Bria Persaud, Ying-Chiang Jeffrey Lee, Jordan Despanie, Helin Hernandez, Henry Alexander Bradley, Sarah L Gebauer, Greg McKelvey
{"title":"Automated Grading for Efficiently Evaluating the Dual-Use Biological Capabilities of Large Language Models.","authors":"Bria Persaud, Ying-Chiang Jeffrey Lee, Jordan Despanie, Helin Hernandez, Henry Alexander Bradley, Sarah L Gebauer, Greg McKelvey","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in the biological knowledge and reasoning capabilities of large language models (LLMs) have sparked interest in assessing the potential of LLMs to facilitate emerging biological risks. The authors evaluated LLMs' abilities to answer knowledge-based questions and generate protocols that explain how to perform common laboratory techniques that could be used in the creation of proxies for biological threats. Because LLM evaluation approaches that rely on human subject-matter experts are often costly and time-intensive, the authors introduced an automated systematic and scalable method for evaluating the ability of LLMs to generate protocols for laboratory techniques. The results presented confirm prior work indicating that LLMs possess knowledge of the biological sciences. This study is intended to inform evaluators of artificial intelligence systems, academics, technical experts, and policymakers on techniques for examining the risks of the convergence of LLMs and biological threats.</p>","PeriodicalId":74637,"journal":{"name":"Rand health quarterly","volume":"12 4","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rand health quarterly","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in the biological knowledge and reasoning capabilities of large language models (LLMs) have sparked interest in assessing the potential of LLMs to facilitate emerging biological risks. The authors evaluated LLMs' abilities to answer knowledge-based questions and generate protocols that explain how to perform common laboratory techniques that could be used in the creation of proxies for biological threats. Because LLM evaluation approaches that rely on human subject-matter experts are often costly and time-intensive, the authors introduced an automated systematic and scalable method for evaluating the ability of LLMs to generate protocols for laboratory techniques. The results presented confirm prior work indicating that LLMs possess knowledge of the biological sciences. This study is intended to inform evaluators of artificial intelligence systems, academics, technical experts, and policymakers on techniques for examining the risks of the convergence of LLMs and biological threats.

有效评估大型语言模型的双重用途生物能力的自动分级。
生物知识和大型语言模型(llm)推理能力的进步激发了人们对评估llm促进新兴生物风险潜力的兴趣。作者评估了法学硕士在回答基于知识的问题和生成协议方面的能力,这些协议解释了如何执行可用于创建生物威胁代理的常见实验室技术。由于依赖于人类主题专家的法学硕士评估方法通常是昂贵和耗时的,作者介绍了一种自动化的系统和可扩展的方法来评估法学硕士生成实验室技术协议的能力。提出的结果证实了先前的工作表明llm拥有生物科学知识。本研究旨在为人工智能系统的评估者、学者、技术专家和政策制定者提供有关检查法学硕士和生物威胁融合风险的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信