Kuang Yee Ng, Noorhafiza Muhammad, Mohd Shuhidan Saleh, Siti Noor Fazliah Mohd Noor, Nur Amalina Muhammad, Kamalakanta Muduli, V K Bupesh Raja, Kah Vui Chong
{"title":"The Potential of Stent Cell Geometry to Affect Endothelialisation Performance: A Review of Existing Research and Future Perspective.","authors":"Kuang Yee Ng, Noorhafiza Muhammad, Mohd Shuhidan Saleh, Siti Noor Fazliah Mohd Noor, Nur Amalina Muhammad, Kamalakanta Muduli, V K Bupesh Raja, Kah Vui Chong","doi":"10.1088/1748-605X/ae0dd2","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelialisation is critical for the success of coronary stents, as it mitigates thrombosis risk and ensures long-term vascular healing. While advancements in stent materials, surface modifications and surface coatings have improved stent performance, the influence of stent cell geometry (particularly cell shape and size) on endothelialisation remains underexplored. This review examines the principles of cell growth influenced by geometry, drawing insights from non-coronary stent applications to identify research gaps in coronary stent applications. While recent studies highlight the role of surface microstructure in endothelialisation, the impact of stent cell geometry remains largely unexplored. Moreover, insights from tissue engineering (TE) suggest that optimising scaffold geometry could enhance endothelial cells (ECs) adhesion and proliferation, thereby accelerating re-endothelialisation. Based on these considerations, this review hypothesizes that optimising stent cell geometry could directly regulate ECs behaviour, thereby influencing endothelialisation performance. Finally, this paper critically evaluates the limitations of existing research and proposes future directions for leveraging cell geometry in the development of next-generation stents with improved biocompatibility and endothelialisation performance.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae0dd2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelialisation is critical for the success of coronary stents, as it mitigates thrombosis risk and ensures long-term vascular healing. While advancements in stent materials, surface modifications and surface coatings have improved stent performance, the influence of stent cell geometry (particularly cell shape and size) on endothelialisation remains underexplored. This review examines the principles of cell growth influenced by geometry, drawing insights from non-coronary stent applications to identify research gaps in coronary stent applications. While recent studies highlight the role of surface microstructure in endothelialisation, the impact of stent cell geometry remains largely unexplored. Moreover, insights from tissue engineering (TE) suggest that optimising scaffold geometry could enhance endothelial cells (ECs) adhesion and proliferation, thereby accelerating re-endothelialisation. Based on these considerations, this review hypothesizes that optimising stent cell geometry could directly regulate ECs behaviour, thereby influencing endothelialisation performance. Finally, this paper critically evaluates the limitations of existing research and proposes future directions for leveraging cell geometry in the development of next-generation stents with improved biocompatibility and endothelialisation performance.