{"title":"Research progress of exosomes used in the Alzheimer's disease treatment","authors":"Xiaoqin Gao, Ke Yang, Xiaokui Yuan, Mengyuan Song, Tong Wang, Chenlan Shen","doi":"10.1186/s11671-025-04361-0","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer's disease (AD) is a common form of dementia characterized by memory loss, cognitive and linguistic abilities declining and self-care capabilities diminishment. With the aging population globally, AD poses a significant threat to public health. Current treatments for AD aim to alleviate symptoms and slow down disease progression, but due to the limited understanding of underlying disease mechanisms, AD is still impossible to be cured yet. In recent years, there has been an exponential growth in exosome-related research because of their excellent biocompatibility ability, loading capacity and cellular internalization, making exosome to be one of the hotspots and a promising strategy in AD therapy research. This comprehensive review systematically explores the potential roles of various exosome-based nanotherapeutic strategy in AD treatment, with a particular focus on their specific biological mechanisms of action. Firstly, we elaborated on the pathological mechanisms of AD formation as well as the mechanisms related to the formation, secretion and function of exosome. Additionally, we highlighted the research progress in the development of exosome-based nanotherapeutic strategies for AD treatment and their corresponding biological mechanisms. Furthermore, we delved into the challenges and opportunities these strategies facing in clinical application. Looking forward to future research directions and trends, our review aims to provide a more comprehensive understanding and guidance with the application of exosome in AD treatment. Exosome-based nanotherapeutic strategies, as a new therapeutic approach, have opened up new possibilities for the treatment of AD and brought new light to patients.</p><p>Schematic diagram of exosome-based nanotherapy strategies for the treatment of AD. It can be roughly classified as: exosomes-based methods treating AD and bioengineered exosomes for the treatment of AD.</p>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04361-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04361-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a common form of dementia characterized by memory loss, cognitive and linguistic abilities declining and self-care capabilities diminishment. With the aging population globally, AD poses a significant threat to public health. Current treatments for AD aim to alleviate symptoms and slow down disease progression, but due to the limited understanding of underlying disease mechanisms, AD is still impossible to be cured yet. In recent years, there has been an exponential growth in exosome-related research because of their excellent biocompatibility ability, loading capacity and cellular internalization, making exosome to be one of the hotspots and a promising strategy in AD therapy research. This comprehensive review systematically explores the potential roles of various exosome-based nanotherapeutic strategy in AD treatment, with a particular focus on their specific biological mechanisms of action. Firstly, we elaborated on the pathological mechanisms of AD formation as well as the mechanisms related to the formation, secretion and function of exosome. Additionally, we highlighted the research progress in the development of exosome-based nanotherapeutic strategies for AD treatment and their corresponding biological mechanisms. Furthermore, we delved into the challenges and opportunities these strategies facing in clinical application. Looking forward to future research directions and trends, our review aims to provide a more comprehensive understanding and guidance with the application of exosome in AD treatment. Exosome-based nanotherapeutic strategies, as a new therapeutic approach, have opened up new possibilities for the treatment of AD and brought new light to patients.
Schematic diagram of exosome-based nanotherapy strategies for the treatment of AD. It can be roughly classified as: exosomes-based methods treating AD and bioengineered exosomes for the treatment of AD.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.