On training networks of monostable multivibrator timer neurons

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lars Keuninckx , Matthias Hartmann , Paul Detterer , Ali Safa , Wout Mommen , Ilja Ocket
{"title":"On training networks of monostable multivibrator timer neurons","authors":"Lars Keuninckx ,&nbsp;Matthias Hartmann ,&nbsp;Paul Detterer ,&nbsp;Ali Safa ,&nbsp;Wout Mommen ,&nbsp;Ilja Ocket","doi":"10.1016/j.neunet.2025.108092","DOIUrl":null,"url":null,"abstract":"<div><div>An important bottleneck in present-day neuromorphic hardware is its reliance on synaptic addition, which limits the achievable degree of parallelization and thus processing throughput. We present a network of monostable multivibrator timers, whose synaptic inputs are simply OR-ed together, thus mitigating the synaptic addition bottleneck. Monostable multivibrators are simple timers which are easily implemented using counters in digital hardware and can be interpreted as non biologically-inspired spiking neurons. We show how fully binarized event-driven recurrent networks of monostable multivibrators can be trained to solve classification tasks. Our training algorithm resolves temporally overlapping input events. We demonstrate our approach on the MNIST handwritten digits, Google Soli radar gestures, IBM DVS128 gestures and Yin-Yang classification tasks. The estimated energy consumption for the MNIST handwritten digits task, excluding the final linear readout layer, is 855pJ per inference for a test accuracy of <span><math><mrow><mn>98.61</mn><mspace></mspace><mo>%</mo></mrow></math></span> for a reconfigurable network of 500 units, when mapped to the TSMC HPC+ <span><math><mrow><mn>28</mn><mspace></mspace><mrow><mi>nm</mi></mrow></mrow></math></span> process.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"194 ","pages":"Article 108092"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025009724","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

An important bottleneck in present-day neuromorphic hardware is its reliance on synaptic addition, which limits the achievable degree of parallelization and thus processing throughput. We present a network of monostable multivibrator timers, whose synaptic inputs are simply OR-ed together, thus mitigating the synaptic addition bottleneck. Monostable multivibrators are simple timers which are easily implemented using counters in digital hardware and can be interpreted as non biologically-inspired spiking neurons. We show how fully binarized event-driven recurrent networks of monostable multivibrators can be trained to solve classification tasks. Our training algorithm resolves temporally overlapping input events. We demonstrate our approach on the MNIST handwritten digits, Google Soli radar gestures, IBM DVS128 gestures and Yin-Yang classification tasks. The estimated energy consumption for the MNIST handwritten digits task, excluding the final linear readout layer, is 855pJ per inference for a test accuracy of 98.61% for a reconfigurable network of 500 units, when mapped to the TSMC HPC+ 28nm process.
单稳态多振子定时器神经元的训练网络。
当前神经形态硬件的一个重要瓶颈是它对突触加法的依赖,这限制了可实现的并行化程度,从而限制了处理吞吐量。我们提出了一个单稳态多振子定时器网络,其突触输入简单地OR-ed在一起,从而减轻了突触添加的瓶颈。单稳态多振子是一种简单的定时器,可以很容易地使用数字硬件中的计数器来实现,并且可以被解释为非生物激发的尖峰神经元。我们展示了如何训练完全二值化的单稳态多振子事件驱动循环网络来解决分类任务。我们的训练算法解决了暂时重叠的输入事件。我们在MNIST手写数字、谷歌Soli雷达手势、IBM DVS128手势和阴阳分类任务上展示了我们的方法。当映射到台积电HPC+ 28nm工艺时,mist手写数字任务(不包括最后的线性读出层)的估计能耗为每次推理855pJ,测试精度为98.61%,可重构网络为500个单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信