I van der Knaap, H Kuipers, J van Eerbeek, P P Schollema, J B J Huisman
{"title":"Assessing downstream passage of European silver eel at a tidal pumping station: acceleration as a proxy for eel activity.","authors":"I van der Knaap, H Kuipers, J van Eerbeek, P P Schollema, J B J Huisman","doi":"10.1186/s40462-025-00588-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To complete their lifecycle, diadromous fish often need to pass anthropogenic barriers in regulated rivers and estuaries (e.g., pumping stations, weirs, hydropower facilities). The safe and timely passage of the endangered catadromous European eel (Anguilla anguilla), through pumping stations is a major concern and European legislation stipulates that safe downstream passage must be provided at hazardous intakes. To implement effective mitigation measures, specific knowledge on eel passage behaviour at barriers is needed.</p><p><strong>Methods: </strong>We used acoustic telemetry with acceleration sensors tags, to understand eel movement and activity, migration routes, escapement success, and delay at a tidal pumping station. Tri-axes accelerometers measured eel acceleration in three directions and provide a root-mean-square (RMS) value over the measurement period, providing a proxy for eel activity. A network of 10 receivers was placed along the migration route to track 40 tagged individuals. Telemetry data were analysed using visual investigation of eel detections and Generalised Additive Mixed Models (GAMMs) for analysing acceleration data.</p><p><strong>Results: </strong>We found that 75% of the tagged eels migrated to the estuary via the pumping station (PS), 5% used other routes, and 20% did not migrate seaward that season. Acceleration data showed that eels significantly increased their activity up until the moment of PS passage, from an overall mean RMS acceleration of 1.04 m/s<sup>2</sup> (95% CI = 0.93-1.18) when the pumping station started pumping (between 1 up to 4 h before eel passage), to 1.14 m/s<sup>2</sup> (95% CI = 1.04-1.26) at 10 min before the eels passed through the pumps, and 1.66 m/s<sup>2</sup> (95% CI = 1.32-2.08) 1 min before passage. Most eels passed the pumping station at night, and we found that eels had the highest movement activity between 15:00 and 00:00 with a peak around 19:00, which coincided with the moment of PS passage.</p><p><strong>Conclusions: </strong>Acceleration provides a proxy for fish movement activity and our study demonstrates how including accelerometer sensors with telemetry can help understand movement of endangered species at migration barriers. This information is vital for implementing strategies to improve outward migration success, towards the spawning grounds in the Sargasso Sea, and thus the conservation and restoration of eel populations.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"13 1","pages":"69"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486681/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-025-00588-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To complete their lifecycle, diadromous fish often need to pass anthropogenic barriers in regulated rivers and estuaries (e.g., pumping stations, weirs, hydropower facilities). The safe and timely passage of the endangered catadromous European eel (Anguilla anguilla), through pumping stations is a major concern and European legislation stipulates that safe downstream passage must be provided at hazardous intakes. To implement effective mitigation measures, specific knowledge on eel passage behaviour at barriers is needed.
Methods: We used acoustic telemetry with acceleration sensors tags, to understand eel movement and activity, migration routes, escapement success, and delay at a tidal pumping station. Tri-axes accelerometers measured eel acceleration in three directions and provide a root-mean-square (RMS) value over the measurement period, providing a proxy for eel activity. A network of 10 receivers was placed along the migration route to track 40 tagged individuals. Telemetry data were analysed using visual investigation of eel detections and Generalised Additive Mixed Models (GAMMs) for analysing acceleration data.
Results: We found that 75% of the tagged eels migrated to the estuary via the pumping station (PS), 5% used other routes, and 20% did not migrate seaward that season. Acceleration data showed that eels significantly increased their activity up until the moment of PS passage, from an overall mean RMS acceleration of 1.04 m/s2 (95% CI = 0.93-1.18) when the pumping station started pumping (between 1 up to 4 h before eel passage), to 1.14 m/s2 (95% CI = 1.04-1.26) at 10 min before the eels passed through the pumps, and 1.66 m/s2 (95% CI = 1.32-2.08) 1 min before passage. Most eels passed the pumping station at night, and we found that eels had the highest movement activity between 15:00 and 00:00 with a peak around 19:00, which coincided with the moment of PS passage.
Conclusions: Acceleration provides a proxy for fish movement activity and our study demonstrates how including accelerometer sensors with telemetry can help understand movement of endangered species at migration barriers. This information is vital for implementing strategies to improve outward migration success, towards the spawning grounds in the Sargasso Sea, and thus the conservation and restoration of eel populations.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.