Biallelic variants in BCAT1 impair mitochondrial function and are associated with a candidate neurometabolic disorder.

IF 3.6 Q2 GENETICS & HEREDITY
Brianna L DiSanza, Giulia S Porcari, Livia Sertori Finoti, Leonardo Ramos-Rodriguez, Devin M Burris, Justin A McDonough, Gang Ning, Grace Fagan, Guy T Helman, Erin Weiss, Ryan J Taft, Amy Pizzino, Matthew T Whitehead, Amy Waldman, Cas Simons, Xilma Ortiz-Gonzalez, William C Skarnes, Adeline Vanderver, Elizabeth J Bhoj, Rebecca C Ahrens-Nicklas
{"title":"Biallelic variants in BCAT1 impair mitochondrial function and are associated with a candidate neurometabolic disorder.","authors":"Brianna L DiSanza, Giulia S Porcari, Livia Sertori Finoti, Leonardo Ramos-Rodriguez, Devin M Burris, Justin A McDonough, Gang Ning, Grace Fagan, Guy T Helman, Erin Weiss, Ryan J Taft, Amy Pizzino, Matthew T Whitehead, Amy Waldman, Cas Simons, Xilma Ortiz-Gonzalez, William C Skarnes, Adeline Vanderver, Elizabeth J Bhoj, Rebecca C Ahrens-Nicklas","doi":"10.1016/j.xhgg.2025.100525","DOIUrl":null,"url":null,"abstract":"<p><p>Branched-chain amino acid transaminase-1 (BCAT1) initiates the catabolism of branched-chain amino acids (BCAA), which are essential for neurologic function. However, the role of BCAT1 in neurodevelopment is largely unknown. Here, we identify compound heterozygous BCAT1 variants in a patient with a severe progressive neurodevelopmental syndrome. To investigate the functional consequences, we established patient variant (BCAT1: c.792T>A p.(Phe264Leu); c.1042G>A p.(Glu348Lys)) and BCAT1 knockout hiPSC models. Both disease models show profound defects in cortical neuron differentiation and neurite outgrowth. Furthermore, metabolic analysis revealed evidence of mitochondrial dysfunction associated with increased levels of tricarboxylic acid (TCA) cycle intermediates, glutamate, and glutamine. This increase is linked to altered oxygen consumption rates, superoxide production, and upregulation of UCP2 in BCAT1-disease neurons, suggesting a downstream impact on electron-transport chain homeostasis. These findings establish a regulatory role for BCAT1 in mitochondrial function and further define a role for genomic variants in BCAT1 in neurometabolic disorders.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100525"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Branched-chain amino acid transaminase-1 (BCAT1) initiates the catabolism of branched-chain amino acids (BCAA), which are essential for neurologic function. However, the role of BCAT1 in neurodevelopment is largely unknown. Here, we identify compound heterozygous BCAT1 variants in a patient with a severe progressive neurodevelopmental syndrome. To investigate the functional consequences, we established patient variant (BCAT1: c.792T>A p.(Phe264Leu); c.1042G>A p.(Glu348Lys)) and BCAT1 knockout hiPSC models. Both disease models show profound defects in cortical neuron differentiation and neurite outgrowth. Furthermore, metabolic analysis revealed evidence of mitochondrial dysfunction associated with increased levels of tricarboxylic acid (TCA) cycle intermediates, glutamate, and glutamine. This increase is linked to altered oxygen consumption rates, superoxide production, and upregulation of UCP2 in BCAT1-disease neurons, suggesting a downstream impact on electron-transport chain homeostasis. These findings establish a regulatory role for BCAT1 in mitochondrial function and further define a role for genomic variants in BCAT1 in neurometabolic disorders.

BCAT1的双等位基因变异损害线粒体功能,并与一种候选神经代谢疾病有关。
支链氨基酸转氨酶-1 (BCAT1)启动支链氨基酸(BCAA)的分解代谢,而支链氨基酸是神经功能所必需的。然而,BCAT1在神经发育中的作用在很大程度上是未知的。在这里,我们在患有严重进行性神经发育综合征的患者中发现了复合杂合BCAT1变异。为了研究功能影响,我们建立了患者变异(BCAT1: c.792T>A p.(Phe264Leu);c.1042G>A . p.(Glu348Lys))和BCAT1敲除hiPSC模型。两种疾病模型在皮层神经元分化和神经突生长方面都存在严重缺陷。此外,代谢分析显示线粒体功能障碍与三羧酸(TCA)循环中间体、谷氨酸和谷氨酰胺水平升高有关。这种增加与bcat1疾病神经元中氧消耗速率的改变、超氧化物的产生和UCP2的上调有关,表明对电子传递链稳态有下游影响。这些发现确定了BCAT1在线粒体功能中的调节作用,并进一步确定了BCAT1基因组变异在神经代谢疾病中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信