Harnessing Redox: Biocomposites Modulate Macrophage-Stem Cell Dynamics in Osteo-Inflammation.

IF 4.6 2区 医学 Q2 CELL & TISSUE ENGINEERING
Ziyang Min, Yi Zou, Yuanling Meng, Xian Liu, Haoning Li, Hanghang Liu, Jun Liu
{"title":"Harnessing Redox: Biocomposites Modulate Macrophage-Stem Cell Dynamics in Osteo-Inflammation.","authors":"Ziyang Min, Yi Zou, Yuanling Meng, Xian Liu, Haoning Li, Hanghang Liu, Jun Liu","doi":"10.1177/19373341251377651","DOIUrl":null,"url":null,"abstract":"<p><p>This review elucidates the complex interplay among oxidative stress (OS), macrophage polarization, and stem cell-driven osteogenesis, emphasizing the regulatory influence of reactive oxygen species (ROS) on bone repair and regeneration. It demonstrates that an imbalance in ROS can impede bone healing by disrupting the equilibrium between pro-inflammatory (M1) and pro-repair (M2) macrophage phenotypes. Furthermore, the review delineates the mechanisms through which ROS can influence mesenchymal stem cell differentiation and osteoclast activity, while also highlighting the body's antioxidant defenses that counteract OS. Innovative strategies are explored, particularly the use of biomaterials and nanomedicine, which aim to modulate ROS levels and macrophage polarization, thereby fostering a conducive microenvironment for bone regeneration. The integration of nanotechnology, biomaterials, and cellular biology emerges as a promising frontier for advancing bone regeneration therapies, with the necessity for clinical validation underscored throughout. Impact Statement This review establishes redox modulation as a paradigm-shifting strategy for bone regeneration. We elucidate how engineered biocomposites precisely recalibrate reactive oxygen species (ROS) to resolve osteo-inflammation, directing macrophage polarization from pro-inflammatory (M1) to pro-regenerative (M2) phenotypes. This immune reprogramming synergistically enhances mesenchymal stem cell osteogenesis and suppresses osteoclastogenesis. By integrating cutting-edge biomaterial design-including enzyme-mimetic nanozymes and organelle-targeted antioxidants-we highlight clinically viable solutions for diabetic bone defects, osteoporosis, and rheumatoid arthritis. Our framework bridges immunology, nanotechnology, and tissue engineering, offering transformative therapeutic avenues for inflammatory osteopathies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19373341251377651","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This review elucidates the complex interplay among oxidative stress (OS), macrophage polarization, and stem cell-driven osteogenesis, emphasizing the regulatory influence of reactive oxygen species (ROS) on bone repair and regeneration. It demonstrates that an imbalance in ROS can impede bone healing by disrupting the equilibrium between pro-inflammatory (M1) and pro-repair (M2) macrophage phenotypes. Furthermore, the review delineates the mechanisms through which ROS can influence mesenchymal stem cell differentiation and osteoclast activity, while also highlighting the body's antioxidant defenses that counteract OS. Innovative strategies are explored, particularly the use of biomaterials and nanomedicine, which aim to modulate ROS levels and macrophage polarization, thereby fostering a conducive microenvironment for bone regeneration. The integration of nanotechnology, biomaterials, and cellular biology emerges as a promising frontier for advancing bone regeneration therapies, with the necessity for clinical validation underscored throughout. Impact Statement This review establishes redox modulation as a paradigm-shifting strategy for bone regeneration. We elucidate how engineered biocomposites precisely recalibrate reactive oxygen species (ROS) to resolve osteo-inflammation, directing macrophage polarization from pro-inflammatory (M1) to pro-regenerative (M2) phenotypes. This immune reprogramming synergistically enhances mesenchymal stem cell osteogenesis and suppresses osteoclastogenesis. By integrating cutting-edge biomaterial design-including enzyme-mimetic nanozymes and organelle-targeted antioxidants-we highlight clinically viable solutions for diabetic bone defects, osteoporosis, and rheumatoid arthritis. Our framework bridges immunology, nanotechnology, and tissue engineering, offering transformative therapeutic avenues for inflammatory osteopathies.

利用氧化还原:生物复合材料调节骨炎症中的巨噬细胞-干细胞动力学。
本文综述了氧化应激(OS)、巨噬细胞极化和干细胞驱动成骨之间的复杂相互作用,重点阐述了活性氧(ROS)对骨修复和再生的调节作用。研究表明,ROS失衡可以通过破坏促炎(M1)和促修复(M2)巨噬细胞表型之间的平衡来阻碍骨愈合。此外,该综述还描述了ROS影响间充质干细胞分化和破骨细胞活性的机制,同时也强调了人体对抗OS的抗氧化防御。探索创新策略,特别是生物材料和纳米药物的使用,旨在调节ROS水平和巨噬细胞极化,从而培养有利于骨再生的微环境。纳米技术、生物材料和细胞生物学的整合是推进骨再生治疗的一个有前途的前沿,临床验证的必要性贯穿始终。本综述建立了氧化还原调节作为骨再生的范式转换策略。我们阐明了工程生物复合材料如何精确地重新校准活性氧(ROS)来解决骨炎症,引导巨噬细胞从促炎(M1)表型到促再生(M2)表型的极化。这种免疫重编程协同增强间充质干细胞成骨和抑制破骨细胞的发生。通过整合尖端的生物材料设计-包括模拟酶纳米酶和细胞器靶向抗氧化剂-我们突出了糖尿病骨缺损,骨质疏松症和类风湿性关节炎的临床可行解决方案。我们的框架将免疫学、纳米技术和组织工程结合起来,为炎症性骨病提供变革性的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信