Chaofan Chen, Qi Su, Min Zi, Xiaokun Hua, Zhiyun Zhang
{"title":"Harnessing gut microbiota for colorectal cancer therapy: from clinical insights to therapeutic innovations.","authors":"Chaofan Chen, Qi Su, Min Zi, Xiaokun Hua, Zhiyun Zhang","doi":"10.1038/s41522-025-00818-3","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) remains a leading cause of cancer morbidity and mortality worldwide, yet improvements in survival have been modest despite advances in conventional therapies. The gut microbiota has emerged as a critical player in CRC pathogenesis and a promising therapeutic target to enhance clinical outcomes. Mounting evidence implicates specific microorganisms, notably Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis, in tumor initiation and progression through DNA damage, inflammatory modulation, and immunosuppressive mechanisms. Clinical trials investigating microbiome modulators-including faecal microbiota transplantation, probiotics, prebiotics, and engineered biotherapeutics-highlight their potential to augment chemotherapy, radiotherapy, immunotherapy, and surgical recovery, with encouraging preliminary efficacy in treatment-resistant CRC subtypes. Nonetheless, translating microbiome interventions into standardized clinical practice requires rigorous mechanistic validation, robust biomarker development, and careful management of safety concerns. Future research must focus on integrating high-resolution multi-omics, spatial microbiome mapping, artificial intelligence analytics, and innovative microbiome-targeted nanotechnologies to precisely reshape gut microbial communities, thereby ushering in a new era of precision oncology in colorectal cancer management.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"190"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00818-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer morbidity and mortality worldwide, yet improvements in survival have been modest despite advances in conventional therapies. The gut microbiota has emerged as a critical player in CRC pathogenesis and a promising therapeutic target to enhance clinical outcomes. Mounting evidence implicates specific microorganisms, notably Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis, in tumor initiation and progression through DNA damage, inflammatory modulation, and immunosuppressive mechanisms. Clinical trials investigating microbiome modulators-including faecal microbiota transplantation, probiotics, prebiotics, and engineered biotherapeutics-highlight their potential to augment chemotherapy, radiotherapy, immunotherapy, and surgical recovery, with encouraging preliminary efficacy in treatment-resistant CRC subtypes. Nonetheless, translating microbiome interventions into standardized clinical practice requires rigorous mechanistic validation, robust biomarker development, and careful management of safety concerns. Future research must focus on integrating high-resolution multi-omics, spatial microbiome mapping, artificial intelligence analytics, and innovative microbiome-targeted nanotechnologies to precisely reshape gut microbial communities, thereby ushering in a new era of precision oncology in colorectal cancer management.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.