{"title":"Treg-microglia partnership in the injured spinal cord preserves Treg cell function and regulates microglial cholesterol metabolism.","authors":"Tao Qin, Tao Jiang, Zihan Zhou, Mengyuan Wu, Yuanzhen Zhang, Zhenqi Yang, Ziyang Zheng, Jiang Yi, Xiaowei Wang, Mingran Luo, Peng Gao, Jiayun Liu, Yifan Huang, Hao Liu, Qingqing Li, Wei Zhou, Shujun Zhang, Xiaodong Guo, Baorong He, Yongxiang Wang, Jin Fan, Shujie Zhao, Jian Chen, Guoyong Yin","doi":"10.1016/j.neuron.2025.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>The spatiotemporal dynamics and specific roles of regulatory T (Treg) cells in spinal cord injury (SCI) remain unclear. Using single-cell RNA sequencing, flow cytometry, and immunofluorescence, we found that thymus-derived Treg cells infiltrate the injured spinal cord via peripheral blood around 3 days post-SCI. Treg cell depletion worsened SCI and impaired long-term recovery. Transcriptomic profiling revealed strong anti-inflammatory functions of Treg cells and the potential to regulate cholesterol metabolism in neighboring microglia. Further single-cell RNA sequencing uncovered the clonality of SCI-associated Treg cells. Major histocompatibility complex class II (MHC II) expression on microglia, not macrophages, was crucial for sustaining Treg cell numbers and neuroprotective function, with myelin-phagocytosing microglia-activated Treg cells showing significant neuroprotective effects. Treg cells mitigated microglial inflammation via CTLA-4 and upregulated the ATP-binding cassette transporter G1 (Abcg1) receptor in microglia, helping to manage myelin load and reduce lipid droplet formation. Our findings offer mechanistic insights into SCI-associated Treg cells and lay the groundwork for future Treg-based therapies in SCI treatment.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.09.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The spatiotemporal dynamics and specific roles of regulatory T (Treg) cells in spinal cord injury (SCI) remain unclear. Using single-cell RNA sequencing, flow cytometry, and immunofluorescence, we found that thymus-derived Treg cells infiltrate the injured spinal cord via peripheral blood around 3 days post-SCI. Treg cell depletion worsened SCI and impaired long-term recovery. Transcriptomic profiling revealed strong anti-inflammatory functions of Treg cells and the potential to regulate cholesterol metabolism in neighboring microglia. Further single-cell RNA sequencing uncovered the clonality of SCI-associated Treg cells. Major histocompatibility complex class II (MHC II) expression on microglia, not macrophages, was crucial for sustaining Treg cell numbers and neuroprotective function, with myelin-phagocytosing microglia-activated Treg cells showing significant neuroprotective effects. Treg cells mitigated microglial inflammation via CTLA-4 and upregulated the ATP-binding cassette transporter G1 (Abcg1) receptor in microglia, helping to manage myelin load and reduce lipid droplet formation. Our findings offer mechanistic insights into SCI-associated Treg cells and lay the groundwork for future Treg-based therapies in SCI treatment.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.