Fanny Cazettes, Davide Reato, Elisabete Augusto, Raphael Steinfeld, Alfonso Renart, Zachary F Mainen
{"title":"Facial expressions in mice reveal latent cognitive variables and their neural correlates.","authors":"Fanny Cazettes, Davide Reato, Elisabete Augusto, Raphael Steinfeld, Alfonso Renart, Zachary F Mainen","doi":"10.1038/s41593-025-02071-5","DOIUrl":null,"url":null,"abstract":"<p><p>Brain activity controls adaptive behavior but also drives unintentional incidental movements. Such movements could potentially be used to read out internal cognitive variables that are also neurally computed. Establishing this would require ruling out that incidental movements reflect cognition merely because they are coupled with task-related responses through the biomechanics of the body. Here we addressed this issue in a foraging task for mice, where multiple decision variables are simultaneously encoded even if, at any given time, only one of them is used. We found that characteristic features of the face simultaneously encode not only the currently used decision variables but also independent and unexpressed ones, and we show that these features partially originate from neural activity in the secondary motor cortex. Our results suggest that facial movements reflect ongoing computations above and beyond those related to task demands and demonstrate the ability of noninvasive monitoring to expose otherwise latent cognitive states.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":" ","pages":""},"PeriodicalIF":20.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-02071-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Brain activity controls adaptive behavior but also drives unintentional incidental movements. Such movements could potentially be used to read out internal cognitive variables that are also neurally computed. Establishing this would require ruling out that incidental movements reflect cognition merely because they are coupled with task-related responses through the biomechanics of the body. Here we addressed this issue in a foraging task for mice, where multiple decision variables are simultaneously encoded even if, at any given time, only one of them is used. We found that characteristic features of the face simultaneously encode not only the currently used decision variables but also independent and unexpressed ones, and we show that these features partially originate from neural activity in the secondary motor cortex. Our results suggest that facial movements reflect ongoing computations above and beyond those related to task demands and demonstrate the ability of noninvasive monitoring to expose otherwise latent cognitive states.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.