Nicolas Borisov, Yaroslav Ilnytsky, Boseon Byeon, Olga Kovalchuk, Igor Kovalchuk
{"title":"Multi-omics data integration for topology-based pathway activation assessment and personalized drug ranking.","authors":"Nicolas Borisov, Yaroslav Ilnytsky, Boseon Byeon, Olga Kovalchuk, Igor Kovalchuk","doi":"10.1039/d5mo00151j","DOIUrl":null,"url":null,"abstract":"<p><p>Although multi-omics analysis is popular for revealing diverse physiological effects and biomarkers in many branches of state-of-the-art molecular and cell biology and bioinformatics, there is still no consensus on a gold standard protocol for the integration of various multi-omics profiles into a uniformly shaped system bioinformatics platform. In the current study, we performed the integration of data on DNA methylation, and the expression of coding RNA (mRNA), micro-RNA (miRNA), and long non-coding RNA into a joint platform for calculation of signaling pathway impact analysis (SPIA) and drug efficiency index (DEI). We found that the mirrored and balanced DEI values fitted the DNA methylome data better than the original DEI. Additionally, the protein-coding mRNA-based values correlated more strongly with antisense lncRNA-based values than with miRNA-based values. The whole correlation between the mRNA-based and antisense lncRNA-based values was generally positive. This platform allowed integrative analysis of several levels of gene expression regulation of protein-coding genes and their regulators, including methylation and noncoding RNAs.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d5mo00151j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although multi-omics analysis is popular for revealing diverse physiological effects and biomarkers in many branches of state-of-the-art molecular and cell biology and bioinformatics, there is still no consensus on a gold standard protocol for the integration of various multi-omics profiles into a uniformly shaped system bioinformatics platform. In the current study, we performed the integration of data on DNA methylation, and the expression of coding RNA (mRNA), micro-RNA (miRNA), and long non-coding RNA into a joint platform for calculation of signaling pathway impact analysis (SPIA) and drug efficiency index (DEI). We found that the mirrored and balanced DEI values fitted the DNA methylome data better than the original DEI. Additionally, the protein-coding mRNA-based values correlated more strongly with antisense lncRNA-based values than with miRNA-based values. The whole correlation between the mRNA-based and antisense lncRNA-based values was generally positive. This platform allowed integrative analysis of several levels of gene expression regulation of protein-coding genes and their regulators, including methylation and noncoding RNAs.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.