Zihe Zhou , Mengzhe Li , Hanyu Fu , Zhongyu Han , Zhenchao Wu , Huahao Fan , Ning Shen , Jiajia Zheng
{"title":"Biomaterial-driven innovations in phage therapy: Current strategies and future perspectives","authors":"Zihe Zhou , Mengzhe Li , Hanyu Fu , Zhongyu Han , Zhenchao Wu , Huahao Fan , Ning Shen , Jiajia Zheng","doi":"10.1016/j.micres.2025.128351","DOIUrl":null,"url":null,"abstract":"<div><div>The escalating threat of antimicrobial resistance underscores the urgent need for innovative therapeutic strategies. Phage therapy has experienced a resurgence over the past five years following a prolonged period of neglect during the antibiotic era. Despite its therapeutic promise, critical barriers impede clinical translation, including susceptibility to interference from the host's complex physiological environment, a narrow host range, and the inability to lyse intracellular bacteria. To address these limitations and optimize the efficacy of phage-mediated treatment, recent research has increasingly focused on biomaterial-assisted approaches aimed at enhancing therapeutic efficacy. In this review, we concentrate on recent progress in biomaterial-assisted phage-based treatment strategies, including phage physical encapsulation strategies and phage surface chemical coupling strategies. Physical encapsulation employs liposomes, hydrogels, pH-sensitive polymers and etc. for controlled phage delivery, while surface chemical coupling modifies phage capsids with photosensitizers, nanozymes, or metal nanoparticles to enable multifunctional bactericidal mechanisms. In addition, accessibility for phage therapy of intracellular bacteria is discussed. We also conclude key biomaterial selection criteria-prioritizing biosafety, biodegradability, and microenvironment adaptability, and offer novel perspectives for advancing therapeutic precision as well as multidimensional innovation in combating antimicrobial resistance.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"302 ","pages":"Article 128351"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501325003106","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating threat of antimicrobial resistance underscores the urgent need for innovative therapeutic strategies. Phage therapy has experienced a resurgence over the past five years following a prolonged period of neglect during the antibiotic era. Despite its therapeutic promise, critical barriers impede clinical translation, including susceptibility to interference from the host's complex physiological environment, a narrow host range, and the inability to lyse intracellular bacteria. To address these limitations and optimize the efficacy of phage-mediated treatment, recent research has increasingly focused on biomaterial-assisted approaches aimed at enhancing therapeutic efficacy. In this review, we concentrate on recent progress in biomaterial-assisted phage-based treatment strategies, including phage physical encapsulation strategies and phage surface chemical coupling strategies. Physical encapsulation employs liposomes, hydrogels, pH-sensitive polymers and etc. for controlled phage delivery, while surface chemical coupling modifies phage capsids with photosensitizers, nanozymes, or metal nanoparticles to enable multifunctional bactericidal mechanisms. In addition, accessibility for phage therapy of intracellular bacteria is discussed. We also conclude key biomaterial selection criteria-prioritizing biosafety, biodegradability, and microenvironment adaptability, and offer novel perspectives for advancing therapeutic precision as well as multidimensional innovation in combating antimicrobial resistance.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.