Jian Jiang, Long Chen, Lu Ke, Bozheng Dou, Yueying Zhu, Yazhou Shi, Huahai Qiu, Ben-Gong Zhang, Tianshou Zhou, Guo-Wei Wei
{"title":"Machine learning predictions from unpredictable chaos.","authors":"Jian Jiang, Long Chen, Lu Ke, Bozheng Dou, Yueying Zhu, Yazhou Shi, Huahai Qiu, Ben-Gong Zhang, Tianshou Zhou, Guo-Wei Wei","doi":"10.1098/rsif.2025.0441","DOIUrl":null,"url":null,"abstract":"<p><p>Chaos is omnipresent in nature, and its understanding provides enormous social and economic benefits. However, the unpredictability of chaotic systems is a textbook concept due to their sensitivity to initial conditions, aperiodic behaviour, fractal dimensions, nonlinearity and strange attractors. In this work, we introduce, for the first time, chaotic learning, a novel multiscale topological paradigm that enables accurate predictions from chaotic systems. We show that seemingly random and unpredictable chaotic dynamics counterintuitively offer unprecedented quantitative predictions. Specifically, we devise multiscale topological Laplacians to embed real-world data into a family of interactive chaotic dynamical systems, modulate their dynamical behaviours and enable the accurate prediction of the input data. As a proof of concept, we consider 28 datasets from four categories of realistic problems: 10 brain waves, four benchmark protein datasets, 13 single-cell RNA sequencing datasets and an image dataset, as well as two distinct chaotic dynamical systems, namely the Lorenz and Rossler attractors. We demonstrate chaotic learning predictions of the physical properties from chaos. Our new chaotic learning paradigm profoundly changes the textbook perception of chaos and bridges topology, chaos and learning for the first time.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 231","pages":"20250441"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0441","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chaos is omnipresent in nature, and its understanding provides enormous social and economic benefits. However, the unpredictability of chaotic systems is a textbook concept due to their sensitivity to initial conditions, aperiodic behaviour, fractal dimensions, nonlinearity and strange attractors. In this work, we introduce, for the first time, chaotic learning, a novel multiscale topological paradigm that enables accurate predictions from chaotic systems. We show that seemingly random and unpredictable chaotic dynamics counterintuitively offer unprecedented quantitative predictions. Specifically, we devise multiscale topological Laplacians to embed real-world data into a family of interactive chaotic dynamical systems, modulate their dynamical behaviours and enable the accurate prediction of the input data. As a proof of concept, we consider 28 datasets from four categories of realistic problems: 10 brain waves, four benchmark protein datasets, 13 single-cell RNA sequencing datasets and an image dataset, as well as two distinct chaotic dynamical systems, namely the Lorenz and Rossler attractors. We demonstrate chaotic learning predictions of the physical properties from chaos. Our new chaotic learning paradigm profoundly changes the textbook perception of chaos and bridges topology, chaos and learning for the first time.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.