Cancer model with moving extinction threshold reproduces real cancer data.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Frank Bastian, Hassan Alkhayuon, Kieren Mulchrone, Micheal O'Riordain, Sebastian Maciej Wieczorek
{"title":"Cancer model with moving extinction threshold reproduces real cancer data.","authors":"Frank Bastian, Hassan Alkhayuon, Kieren Mulchrone, Micheal O'Riordain, Sebastian Maciej Wieczorek","doi":"10.1098/rsif.2024.0844","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a simple dynamic model of cancer development that captures carcinogenesis and subsequent cancer progression. A central idea of the model is to include the immune response to cancer, which leads to the emergence of an extinction threshold. We first identify the limitations of commonly used extinction threshold models from population biology in reproducing typical cancer progression. We then address these limitations by deriving a new model that incorporates: (i) random mutations of stem cells at a rate that increases with age and (ii) immune response whose strength may also vary over time. Our model accurately reproduces a wide range of real-world cancer data: the typical age-specific cumulative risk of most human cancers, the progression of breast cancer in mice and the unusual age-specific cumulative risk of breast cancer in women. In the last case, we model the different immune response at different phases of the menstrual cycle and menopausal treatment and show that this leads to a moving extinction threshold. This approach provides new insights into the effects of hormone replacement therapy and menstrual cycle length on breast cancer in women. More generally, it can be applied to a variety of other cancer scenarios where the immune response or other important factors vary over time.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 231","pages":"20240844"},"PeriodicalIF":3.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0844","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a simple dynamic model of cancer development that captures carcinogenesis and subsequent cancer progression. A central idea of the model is to include the immune response to cancer, which leads to the emergence of an extinction threshold. We first identify the limitations of commonly used extinction threshold models from population biology in reproducing typical cancer progression. We then address these limitations by deriving a new model that incorporates: (i) random mutations of stem cells at a rate that increases with age and (ii) immune response whose strength may also vary over time. Our model accurately reproduces a wide range of real-world cancer data: the typical age-specific cumulative risk of most human cancers, the progression of breast cancer in mice and the unusual age-specific cumulative risk of breast cancer in women. In the last case, we model the different immune response at different phases of the menstrual cycle and menopausal treatment and show that this leads to a moving extinction threshold. This approach provides new insights into the effects of hormone replacement therapy and menstrual cycle length on breast cancer in women. More generally, it can be applied to a variety of other cancer scenarios where the immune response or other important factors vary over time.

Abstract Image

Abstract Image

Abstract Image

具有移动消光阈值的癌症模型再现了真实的癌症数据。
我们提出了一个简单的癌症发展动态模型,捕捉致癌和随后的癌症进展。该模型的一个核心思想是包括对癌症的免疫反应,这导致了灭绝阈值的出现。我们首先确定了种群生物学中常用的灭绝阈值模型在再现典型癌症进展方面的局限性。然后,我们通过推导一个新的模型来解决这些限制,该模型包含:(i)随年龄增长而增加的干细胞随机突变速率和(ii)强度也可能随时间变化的免疫反应。我们的模型准确地再现了广泛的现实世界癌症数据:大多数人类癌症的典型年龄特异性累积风险,小鼠乳腺癌的进展以及女性乳腺癌的不寻常年龄特异性累积风险。在最后一种情况下,我们在月经周期和更年期治疗的不同阶段模拟不同的免疫反应,并表明这会导致移动的灭绝阈值。这种方法为激素替代疗法和月经周期长度对女性乳腺癌的影响提供了新的见解。更一般地说,它可以应用于免疫反应或其他重要因素随时间变化的各种其他癌症情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信