TumorXDB: an integrated multi-omics xWAS/xQTL platform for cross-ethnic pan-cancer analysis.

IF 7.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zehua Dong, Yihang Cheng, Tao Mo, Wencai Mao, Wenqian Zhao, Deqiang Sun
{"title":"TumorXDB: an integrated multi-omics xWAS/xQTL platform for cross-ethnic pan-cancer analysis.","authors":"Zehua Dong, Yihang Cheng, Tao Mo, Wencai Mao, Wenqian Zhao, Deqiang Sun","doi":"10.1186/s12967-025-07029-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>TumorXDB is a comprehensively curated tumor database integrating molecular association data (xWAS/xQTL) to explore genetic mechanisms across diverse tumors, organs, and ethnic groups. We aimed to provide a unified resource for discovering novel genetic associations and molecular mechanisms in tumors.</p><p><strong>Methods: </strong>TumorXDB integrates four molecular-wide association studies (xWAS) and 23 molecular quantitative trait locus (xQTL) types spanning 10 physiological systems, 50 organs, and 139 cancer subtypes, while incorporating data from 25 ethnic subgroups across four major ancestral populations. To ensure data harmonization, we performed batch-effect correction using ComBat and applied the Benjamini-Hochberg (BH) procedure with false discovery rate (FDR) of < 0.05 for multiple testing correction. Meta-analysis models were developed to generate unified pan-cancer datasets, which are all accessible through a user-friendly web interface ( http://www.tumor-xdb.com ) with full data download capabilities.</p><p><strong>Results: </strong>TumorXDB enabled robust integration of molecular data, revealing novel cross-cancer genetic associations through harmonized analysis.</p><p><strong>Conclusions: </strong>This resource advances precision oncology by providing batch-corrected and statistically rigorous pan-cancer data for therapeutic discovery.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"1019"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-07029-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: TumorXDB is a comprehensively curated tumor database integrating molecular association data (xWAS/xQTL) to explore genetic mechanisms across diverse tumors, organs, and ethnic groups. We aimed to provide a unified resource for discovering novel genetic associations and molecular mechanisms in tumors.

Methods: TumorXDB integrates four molecular-wide association studies (xWAS) and 23 molecular quantitative trait locus (xQTL) types spanning 10 physiological systems, 50 organs, and 139 cancer subtypes, while incorporating data from 25 ethnic subgroups across four major ancestral populations. To ensure data harmonization, we performed batch-effect correction using ComBat and applied the Benjamini-Hochberg (BH) procedure with false discovery rate (FDR) of < 0.05 for multiple testing correction. Meta-analysis models were developed to generate unified pan-cancer datasets, which are all accessible through a user-friendly web interface ( http://www.tumor-xdb.com ) with full data download capabilities.

Results: TumorXDB enabled robust integration of molecular data, revealing novel cross-cancer genetic associations through harmonized analysis.

Conclusions: This resource advances precision oncology by providing batch-corrected and statistically rigorous pan-cancer data for therapeutic discovery.

TumorXDB:用于跨种族泛癌症分析的集成多组学xWAS/xQTL平台。
背景:TumorXDB是一个整合分子关联数据(xWAS/xQTL)的综合性肿瘤数据库,旨在探索不同肿瘤、器官和种族群体的遗传机制。我们的目标是为发现肿瘤中新的遗传关联和分子机制提供统一的资源。方法:TumorXDB整合了4项分子范围关联研究(xWAS)和23种分子数量性状位点(xQTL)类型,涵盖10个生理系统、50个器官和139种癌症亚型,同时纳入了来自4个主要祖先人群的25个民族亚群的数据。为了确保数据的一致性,我们使用ComBat进行了批量效应校正,并应用了benjamin - hochberg (BH)程序,结果显示错误发现率(FDR): TumorXDB实现了分子数据的稳健整合,通过统一分析揭示了新的跨癌症遗传关联。结论:该资源通过为治疗发现提供批量校正和统计严谨的泛癌症数据来推进精确肿瘤学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信