Machine learning demonstrates normal fetal Doppler velocimetry associated with reduced risk of necrotizing enterocolitis among preterm infants with growth restriction.

IF 0.9 Q2 Medicine
F Kim, K E Joung, H Field, M Garland, A Lyford, J J Sheen, T Hays
{"title":"Machine learning demonstrates normal fetal Doppler velocimetry associated with reduced risk of necrotizing enterocolitis among preterm infants with growth restriction.","authors":"F Kim, K E Joung, H Field, M Garland, A Lyford, J J Sheen, T Hays","doi":"10.1177/19345798251382946","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundNecrotizing enterocolitis (NEC) is an intestinal ischemic disease that affects preterm infants with fetal growth restriction (FGR). The role of fetal Dopplers in stratifying risk for developing NEC is unclear but the innovative use of machine learning technology may aid in identifying their contribution.MethodsThis is a single center retrospective cohort of 164 infants born before 33 weeks' gestation with FGR from 2016 to 2019. We used machine learning to classify NEC and to evaluate the predictive values of gestational age (GA), birth weight (BW), and the presence of abnormal umbilical artery (UA) Dopplers before delivery.ResultsEarly GA and lower BW strongly predicted NEC. The presence of normal fetal UA Dopplers was heavily weighted in classifying infants unlikely to develop NEC. Fetal UA Dopplers had a 95% specificity (15% sensitivity) for NEC.ConclusionsIf validated, normal fetal UA Doppler studies may identify infants with FGR at low risk for NEC who may avoid conservative NEC-prevention strategies.</p>","PeriodicalId":16537,"journal":{"name":"Journal of neonatal-perinatal medicine","volume":" ","pages":"19345798251382946"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neonatal-perinatal medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19345798251382946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundNecrotizing enterocolitis (NEC) is an intestinal ischemic disease that affects preterm infants with fetal growth restriction (FGR). The role of fetal Dopplers in stratifying risk for developing NEC is unclear but the innovative use of machine learning technology may aid in identifying their contribution.MethodsThis is a single center retrospective cohort of 164 infants born before 33 weeks' gestation with FGR from 2016 to 2019. We used machine learning to classify NEC and to evaluate the predictive values of gestational age (GA), birth weight (BW), and the presence of abnormal umbilical artery (UA) Dopplers before delivery.ResultsEarly GA and lower BW strongly predicted NEC. The presence of normal fetal UA Dopplers was heavily weighted in classifying infants unlikely to develop NEC. Fetal UA Dopplers had a 95% specificity (15% sensitivity) for NEC.ConclusionsIf validated, normal fetal UA Doppler studies may identify infants with FGR at low risk for NEC who may avoid conservative NEC-prevention strategies.

机器学习显示正常胎儿多普勒速度与生长受限早产儿坏死性小肠结肠炎风险降低相关。
背景坏死性小肠结肠炎(NEC)是一种影响胎儿生长受限(FGR)早产儿的肠道缺血性疾病。胎儿多普勒在发展NEC风险分层中的作用尚不清楚,但机器学习技术的创新使用可能有助于确定其贡献。方法采用单中心回顾性队列研究,纳入2016 - 2019年妊娠33周前出生的FGR患儿164例。我们使用机器学习对NEC进行分类,并评估胎龄(GA)、出生体重(BW)和分娩前脐带动脉(UA)异常多普勒的预测价值。结果早期GA和较低BW对NEC有较强的预测作用。正常胎儿UA多普勒的存在对不太可能发展为NEC的婴儿进行分类有很大的权重。胎儿UA多普勒对NEC有95%的特异性(15%的敏感性)。结论:如果得到证实,正常胎儿UA多普勒研究可以识别出低NEC风险的FGR婴儿,可以避免保守的NEC预防策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neonatal-perinatal medicine
Journal of neonatal-perinatal medicine Medicine-Pediatrics, Perinatology and Child Health
CiteScore
2.00
自引率
0.00%
发文量
124
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信