Co-metabolic breakdown of LDPE microplastics in PGPR-Assisted phytoremediation of hydrocarbon-contaminated soil.

IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Kwang Mo Yang, Toemthip Poolpak, Patompong Saengwilai, Prayad Pokethitiyook, Maleeya Kruatrachue
{"title":"Co-metabolic breakdown of LDPE microplastics in PGPR-Assisted phytoremediation of hydrocarbon-contaminated soil.","authors":"Kwang Mo Yang, Toemthip Poolpak, Patompong Saengwilai, Prayad Pokethitiyook, Maleeya Kruatrachue","doi":"10.1080/15226514.2025.2566159","DOIUrl":null,"url":null,"abstract":"<p><p>A 90-day pot study investigated the effect of low-density polyethylene microplastics (LDPE MPs) on bioaugmented phytoremediation of crude oil-contaminated soil using lemongrass (<i>Cymbopogon flexuosus</i>) and <i>Micrococcus luteus</i> WN01 (PGPR). Plant growth, root morphology, root exudates, microbial population, dehydrogenase activity, residual TPH concentration, and LDPE MP degradation were evaluated. <i>M. luteus</i> significantly increased plant biomass and improved TPH degradation by 79.16% and 64.43%, which were 25.04% and 15.85% higher than uninoculated treatments. <i>M. luteus</i> inoculation still led to higher TPH removal compared to uninoculated treatments despite MP-induced alterations in plant biochemical and morphological traits. GC/MS analysis of lemongrass root exudates showed that <i>M. luteus</i> enriched plants with GABA-associated allelochemicals. FTIR analysis indicated accelerated oxidation of LDPE MPs in planted treatments compared to unplanted ones, evidenced by increased absorbance at characteristic peaks (3620.71 cm<sup>-1</sup> O-H stretching, 1651 cm<sup>-1</sup> C=O stretching, and 1031.10 cm<sup>-1</sup> C-O stretching). This strongly suggests a co-metabolic breakdown of LDPE MPs within the plant rhizosphere (a degradation hotspot). Lemongrass essential oil was not significantly affected by the contaminant or <i>M. luteus</i>. This study highlights the lemongrass-<i>M. luteus</i> association as a promising candidate for the remediation of both petroleum- and MP-contaminated soil, with the added benefit of essential oil production.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-14"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2566159","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A 90-day pot study investigated the effect of low-density polyethylene microplastics (LDPE MPs) on bioaugmented phytoremediation of crude oil-contaminated soil using lemongrass (Cymbopogon flexuosus) and Micrococcus luteus WN01 (PGPR). Plant growth, root morphology, root exudates, microbial population, dehydrogenase activity, residual TPH concentration, and LDPE MP degradation were evaluated. M. luteus significantly increased plant biomass and improved TPH degradation by 79.16% and 64.43%, which were 25.04% and 15.85% higher than uninoculated treatments. M. luteus inoculation still led to higher TPH removal compared to uninoculated treatments despite MP-induced alterations in plant biochemical and morphological traits. GC/MS analysis of lemongrass root exudates showed that M. luteus enriched plants with GABA-associated allelochemicals. FTIR analysis indicated accelerated oxidation of LDPE MPs in planted treatments compared to unplanted ones, evidenced by increased absorbance at characteristic peaks (3620.71 cm-1 O-H stretching, 1651 cm-1 C=O stretching, and 1031.10 cm-1 C-O stretching). This strongly suggests a co-metabolic breakdown of LDPE MPs within the plant rhizosphere (a degradation hotspot). Lemongrass essential oil was not significantly affected by the contaminant or M. luteus. This study highlights the lemongrass-M. luteus association as a promising candidate for the remediation of both petroleum- and MP-contaminated soil, with the added benefit of essential oil production.

LDPE微塑料在pgpr辅助植物修复烃污染土壤中的协同代谢分解。
通过90天盆栽试验,研究了低密度聚乙烯微塑料(LDPE MPs)对柠檬草(Cymbopogon flexuosus)和木犀微球菌(Micrococcus luteus WN01)对原油污染土壤的生物增强植物修复效果。对植物生长、根系形态、根系分泌物、微生物数量、脱氢酶活性、残余TPH浓度和LDPE MP降解进行了评估。黄黄菌处理显著提高了植物生物量和TPH降解能力,分别提高了79.16%和64.43%,分别比未接种处理高25.04%和15.85%。尽管mp诱导了植物生化和形态性状的改变,但与未接种处理相比,接种黄曲霉仍能导致更高的TPH去除率。GC/MS分析表明,香茅根分泌物富含与gaba相关的化感物质。FTIR分析表明,与未种植处理相比,种植处理加速了LDPE MPs的氧化,特征峰(3620.71 cm-1 O- h拉伸,1651 cm-1 C-O拉伸和1031.10 cm-1 C-O拉伸)的吸光度增加。这强烈表明LDPE MPs在植物根际(降解热点)内的共同代谢分解。香茅精油受污染物和黄体分枝杆菌的影响不显著。这项研究强调了柠檬草。黄豆结合体作为修复石油和mp污染土壤的一个有前途的候选人,具有精油生产的额外好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信