Cross-Modality Comparison of Fetal Brain Phenotypes: Insights From Short-Interval Second-Trimester MRI and Ultrasound Imaging.

IF 3.3 2区 医学 Q1 NEUROIMAGING
Madeleine K Wyburd, Nicola K Dinsdale, Vanessa Kyriakopoulou, Lorenzo Venturini, Robert Wright, Alena Uus, Jacqueline Matthew, Emily Skelton, Lilla Zöllei, Joseph Hajnal, Ana I L Namburete
{"title":"Cross-Modality Comparison of Fetal Brain Phenotypes: Insights From Short-Interval Second-Trimester MRI and Ultrasound Imaging.","authors":"Madeleine K Wyburd, Nicola K Dinsdale, Vanessa Kyriakopoulou, Lorenzo Venturini, Robert Wright, Alena Uus, Jacqueline Matthew, Emily Skelton, Lilla Zöllei, Joseph Hajnal, Ana I L Namburete","doi":"10.1002/hbm.70349","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in fetal three-dimensional (3D) ultrasound (US) and magnetic resonance imaging (MRI) have revolutionized the study of fetal brain development, enabling detailed analysis of brain structures and growth. Despite their complementary capabilities, these modalities capture fundamentally different physical signals, potentially leading to systematic differences in image-derived phenotypes (IDPs). Here, we evaluate the agreement of IDPs between US and MRI by comparing the volumes of eight brain structures from 90 subjects derived using deep-learning algorithms from majority same-day imaging (days between scans: mean = 1.2, mode = 0 and max = 4). Excellent agreement (intra-class correlation coefficient, <math> <semantics><mrow><mi>ICC</mi> <mo>></mo> <mn>0.75</mn></mrow> <annotation>$$ ICC>0.75 $$</annotation></semantics> </math> ) was observed for the cerebellum, cavum septum pellucidum, thalamus, white matter and deep grey matter volumes, with significant correlations <math> <semantics> <mrow> <mfenced><mrow><mi>p</mi> <mo><</mo> <mn>0.001</mn></mrow> </mfenced> </mrow> <annotation>$$ \\left(p<0.001\\right) $$</annotation></semantics> </math> for most structures, except the ventricular system. Bland-Altman analysis revealed some systematic biases: intracranial and cortical plate volumes were larger on US than MRI, by an average of <math> <semantics><mrow><mn>35</mn> <mspace></mspace> <msup><mi>cm</mi> <mn>3</mn></msup> </mrow> <annotation>$$ 35\\ {\\mathrm{cm}}^3 $$</annotation></semantics> </math> and <math> <semantics><mrow><mn>4.1</mn> <mspace></mspace> <msup><mi>cm</mi> <mn>3</mn></msup> </mrow> <annotation>$$ 4.1\\ {\\mathrm{cm}}^3 $$</annotation></semantics> </math> , respectively. Finally, we found the labels of the brainstem and ventricular system were not comparable between the modalities. These findings highlight the necessity of structure-specific adjustments when interpreting fetal brain IPDs across modalities and underscore the complementary roles of US and MRI in advancing fetal neuroimaging.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":"e70349"},"PeriodicalIF":3.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hbm.70349","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in fetal three-dimensional (3D) ultrasound (US) and magnetic resonance imaging (MRI) have revolutionized the study of fetal brain development, enabling detailed analysis of brain structures and growth. Despite their complementary capabilities, these modalities capture fundamentally different physical signals, potentially leading to systematic differences in image-derived phenotypes (IDPs). Here, we evaluate the agreement of IDPs between US and MRI by comparing the volumes of eight brain structures from 90 subjects derived using deep-learning algorithms from majority same-day imaging (days between scans: mean = 1.2, mode = 0 and max = 4). Excellent agreement (intra-class correlation coefficient, ICC > 0.75 $$ ICC>0.75 $$ ) was observed for the cerebellum, cavum septum pellucidum, thalamus, white matter and deep grey matter volumes, with significant correlations p < 0.001 $$ \left(p<0.001\right) $$ for most structures, except the ventricular system. Bland-Altman analysis revealed some systematic biases: intracranial and cortical plate volumes were larger on US than MRI, by an average of 35 cm 3 $$ 35\ {\mathrm{cm}}^3 $$ and 4.1 cm 3 $$ 4.1\ {\mathrm{cm}}^3 $$ , respectively. Finally, we found the labels of the brainstem and ventricular system were not comparable between the modalities. These findings highlight the necessity of structure-specific adjustments when interpreting fetal brain IPDs across modalities and underscore the complementary roles of US and MRI in advancing fetal neuroimaging.

胎儿脑表型的跨模态比较:来自短间隔妊娠中期MRI和超声成像的见解。
胎儿三维(3D)超声(US)和磁共振成像(MRI)的进步彻底改变了胎儿大脑发育的研究,使大脑结构和生长的详细分析成为可能。尽管它们具有互补的能力,但这些模式捕获的物理信号根本不同,可能导致图像衍生表型(IDPs)的系统性差异。在这里,我们通过比较来自90名受试者的8个大脑结构的体积来评估US和MRI之间的一致性,这些体积是使用深度学习算法从大多数当天成像中获得的(扫描间隔天数:平均值= 1.2,模式= 0,最大值= 4)。在小脑、透明隔腔、丘脑、白质和深灰质体积上观察到极好的一致性(类内相关系数,ICC>0.75 $$ ICC>0.75 $$),显著相关p 0.001 $$ \左(除心室系统外,大多数结构的p均为p)。Bland-Altman分析揭示了一些系统性偏差:超声成像的颅内和皮质板体积比MRI大,平均分别为35 cm 3 $$ 35\ \ mathm {cm}}^3 $$和4.1 cm 3 $$ 4.1\ \ mathm {cm}}^3 $$ $。最后,我们发现脑干和脑室系统的标签在两种模式之间没有可比性。这些发现强调了在解释胎儿脑ipd时进行结构特异性调整的必要性,并强调了US和MRI在推进胎儿神经成像方面的互补作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信