{"title":"Cinnamaldehyde triggers cell wall remodeling and enhances macrophage-mediated phagocytic clearance of <i>Candida albicans</i>.","authors":"Zhaoling Shi, Jiajia Lin, Wenqian Li, Feng Chen, Wenna Zhang, Yue Yang, Kelong Ma","doi":"10.3389/fcimb.2025.1647320","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong><i>Cinnamomum cassia</i>, a traditional Chinese medicinal herb, possesses cinnamaldehyde (CIN) with well-documented antifungal and immunomodulatory properties. Although CIN inhibits <i>Candida albicans</i> (<i>C. albicans</i>) growth, its role in macrophage-mediated clearance remains poorly understood.</p><p><strong>Methods: </strong>Here, we evaluated CIN's antifungal activity using MIC determination, spot assays, and time-growth curves. Cell wall disruption (β-glucan and chitin exposure) was assessed by transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), and flow cytometry.</p><p><strong>Results: </strong>Transcriptomic and functional enrichment analyses revealed that CIN compromises cell wall integrity by altering 123 differentially expressed genes (DEGs), particularly those governing hyphal development, cell wall biosynthesis, and biofilm formation. Specifically, CIN downregulated genes associated with β-glucan exposure, mannosylation, and chitin synthesis, and upregulated components of the Cek1/MAPK pathway. CIN-enhanced macrophage phagocytosis significantly increased fungal clearance and reduced fungal escape, as shown by flow cytometry, propidium iodide staining, and lactate dehydrogenase release assays. CIN-pretreated fungi activated the Dectin-1/Syk/CARD9/NF-κB cascade, leading to elevated pro-inflammatory cytokine secretion.</p><p><strong>Discussion: </strong>Mechanistically, CIN induces β-1,3-glucan exposure on <i>C. albicans</i>, thereby promoting Dectin-1-mediated phagocytosis and clearance. These findings provide an experimental basis for developing CIN as a novel antifungal therapeutic.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1647320"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1647320","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Cinnamomum cassia, a traditional Chinese medicinal herb, possesses cinnamaldehyde (CIN) with well-documented antifungal and immunomodulatory properties. Although CIN inhibits Candida albicans (C. albicans) growth, its role in macrophage-mediated clearance remains poorly understood.
Methods: Here, we evaluated CIN's antifungal activity using MIC determination, spot assays, and time-growth curves. Cell wall disruption (β-glucan and chitin exposure) was assessed by transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), and flow cytometry.
Results: Transcriptomic and functional enrichment analyses revealed that CIN compromises cell wall integrity by altering 123 differentially expressed genes (DEGs), particularly those governing hyphal development, cell wall biosynthesis, and biofilm formation. Specifically, CIN downregulated genes associated with β-glucan exposure, mannosylation, and chitin synthesis, and upregulated components of the Cek1/MAPK pathway. CIN-enhanced macrophage phagocytosis significantly increased fungal clearance and reduced fungal escape, as shown by flow cytometry, propidium iodide staining, and lactate dehydrogenase release assays. CIN-pretreated fungi activated the Dectin-1/Syk/CARD9/NF-κB cascade, leading to elevated pro-inflammatory cytokine secretion.
Discussion: Mechanistically, CIN induces β-1,3-glucan exposure on C. albicans, thereby promoting Dectin-1-mediated phagocytosis and clearance. These findings provide an experimental basis for developing CIN as a novel antifungal therapeutic.
期刊介绍:
Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.